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This Paper

> Continues the agenda from Weidner and Zylkin JIE 2021

o Estimates for gravity models with two- (or three-)way fixed effects gravity models are biased
o How can we get more reliable inferences?

> Gravity: workhorse model in trade for estimating effects of trade policies (thanks Jeff!)

> ldea: we can use the bootstrap to remove bias

o How? Why? Which bootstrap method(s) should we use?
o How does it work? (theory)
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Motivation

Table: Recapping some results from Weidner and Zylkin (2021)
N=20 N=50 N=100
T=2 T=5 T=10 T=2 T=5 T=10 T=2 T=5 T=10

1. Poisson DGP
Coverage probability with uncorrected SEs (should be 0.95 for an unbiased estimator)

FE-PPML 0.887 0.880 0.892 0912 0905 0.919 0.918 0919  0.925
Analytical BC 0.888 0.897 0.902 0920 0.931 0.938 0.934 0.939  0.948
Jackknife BC 0.857 0.870 0.884 0916 0922 0934 0928 0936 0.945
Coverage probability with corrected SEs (should be 0.95 for an unbiased estimator)
(uncorrected) 0.887 0.880 0.892 0912 0905 0.919 0.918 0919  0.925
FE-PPML + HC2 SEs 0923 0915 0916 0927 0.921 0.930 0.925 0.927 0931
Analytical BC + HC2 SEs 0923 0929 0.930 0.938 0.942 0.949 0942 0945 0.952
Jackknife BC + HC2 SEs 0.900 0903 0915 0932 0935 0.942 0.936 0.941  0.949

Model: yjjr = exp(ait + yjt + nij + Pxije) wijt (‘three-way gravity”) N: no. countries. T: time periods. Estimator: PPML.

Weidner and Zylkin (2021) show that “three-way” PPML gravity estimates are consistent, BUT:
1. Estimates are asymptotically biased due to the incidental parameter problem
2. Standard errors are downward biased as well.

3. Using corrections for both the estimates and SEs can improve inferences
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Motivation

Simulation Results for Different FE-PPML Models

FE-PPML w/ Overlapping Fixed Effects Two-way Gravity Model (T=1)
Inconsistency No Asymptotic Bias
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Figure: Figure from Weidner and Zylkin (2021) illustrating “asymptotic bias”
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Idea: the bootstrap as a bias correction method
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Idea: the bootstrap as a bias correction method

Probability

density Idea behind bootstap bias correction

Left: sampling distribution of a biased estimator

When we bootstrap the data, the bootstrap samples
are drawn from a “population” where the biased
estimate is the “truth”.

So:
distribution of bootstrap
estimates 1
TRUTH  Expected Expected Estimate
estimate  bootstrap
estimate 2.
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Idea: the bootstrap as a bias correction method
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2x the original bias
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Idea behind bootstap bias correction
Left: sampling distribution of a biased estimator

When we bootstrap the data, the bootstrap samples
are drawn from a “population” where the biased
estimate is the “truth”.

So:

1. The bias of each bootstrap estimate is 2x that of
the original estimate
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Idea: the bootstrap as a bias correction method

Probabi

density

ility

Idea behind bootstap bias correction
Left: sampling distribution of a biased estimator

When we bootstrap the data, the bootstrap samples
are drawn from a “population” where the biased
estimate is the “truth”.

So:
o — - 1. The bias of each bootstrap estimate is 2x that of

TRUTH  Expected Expected
estimate  bootstrap
estimate

the original estimate

Estimate
2. We can estimate the bias by comparing the
average bootstrap estimate with the original

estimate.
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Why bootstrap?
Even though there often exist other alternatives, bootstrap bias correction can be a good option!

> Potential for refinements along two margins using a single procedure
o Bootstrap SEs seem to remove bias in confidence interval width (Pfaffermayr 2021)

> Very easy to implement analytically - only need the assumed sampling process
o don’t need to derive/code complicated formulas for the bias

o don’t even need to know the order of the bias! (needed for jackknife)

> computational efficiency can gained using k-step bootstrap (Kim and Sun 2016)
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HOW you bootstrap turns out to matter
The literature offers a lot of alternatives, e.g.

> Traditional re-sampling bootstrap (“pairs bootstrap”)
> Parametric bootstrap

» Kline and Santos “wild score” bootstrap
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HOW you bootstrap turns out to matter
The literature offers a lot of alternatives, e.g.

> Traditional re-sampling bootstrap (“pairs bootstrap”)
> Parametric bootstrap

» Kline and Santos “wild score” bootstrap

“Fractional weight” bootstrap (“Bayesian bootstrap”)
Another option that has become popular recently:
ﬁ? Peter Hull &

) PeterHull &
of Rubin (1981)
= fthe bootstrap? but as with
Ok, 50 come bearing good news for ~93% of you: esp. those requentist world oo
bootstraping complex models (e.g. w/many FEs)

Instead of resampling, which can be seen as reweighting by a random

integer W that may be zero, you can reweight by a random non-zero non- JunShao  Dongsheng Tu
integer W

yesian Bootstrap a
.. [ndom Weighting
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) Peter Hull @

Question for economists who do empirical work:

When you need to bootstrap your SEs, do you:
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When you need to bootstrap your SEs, do you:

Does surprisingly poorly compared to re-sampling approach!
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Bootstrap
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Bias of “heteroskedasticity-robust” standard errors
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Theory: Two-way gravity

Model
Suppose we have the following gravity model:

Yij = €Xp (0(,' +yji+ Xijﬂo) Wijj

> B°: parameter of interest (effect of distance, trade agreement,...)

> aj, yj: exporter and importer fixed effects
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Theory: Two-way gravity

Model
Suppose we have the following gravity model:

Yij = €Xp (0(,' +yji+ Xijﬂo) Wijj

> B°: parameter of interest (effect of distance, trade agreement,...)

> aj, yj: exporter and importer fixed effects

IPP bias in two-way FE models
From Fernandez-val and Weidner (2016), we know for two-way FE models that

E(ﬁ) [30 + —B + NBY + higher-order terms

> By, B)‘f’: asymptotic bias terms due to estimation noise in @;, ¥;

> For any two-way FE estimator, ,E—’d B as N — o (consistency)
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Theory: Three-way gravity

Model
For the three-way gravity model, we have

0
Yijt = exp (Ofir +yje +1ij + xit ) jjt

> % coefficient for time-varying trade cost variables (FTA)

> ajt, Yjt, njj: exporter-time, importer-time and exporter-importer fixed effects

IPP bias of three-way FE PPML estimator
For three-way PPML, Weidner and Zylkin (2021) show the bias remains

~ 1 1
E(p) = [30 + NBZ" + NB;O + higher-order terms

> By, By’: asymptotic bias terms due to estimation noise in i, Yje only

> Special property of PPML: can eliminate 7;;’s contribution to the bias (ensures consistency w/ fixed T)
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Why bootstrap bias correction works (theory)

For the original estimation, we have:

Model:
E(yijlxij, ..) = pij == exp(a; +y;j + x; p)
PML estimation:

Ba,y) = arggwg;ﬁ = Zt’u (B, i, vj)
a, ~

> for PPML, ¢;; = yj; log pj; — pjj
> for Gamma PML, ¢;; = y;;i/pj; — log pjj
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Why bootstrap bias correction works (theory)

For the original estimation, we have:

Model:
E(yijlxij, -.) = pij = exp(aj + yj + xij)
PML estimation:
(B,a,y) =arg max L= Zt’u B, a,,yj)
i.j
Bias (Fernandez-Val and Weidner 2016):

= H N 3 E ﬁka'[ &
E(ﬁ—ﬁo)*ﬁ _NZ d (N[aa, ) ﬁz

=1 j#i bij

(Bt ) 5 e )
(7]
(Zm *ﬁkYJYJ) [Z' ,E({,;j ,?)]

: j . il
=l Z’*f ¢ Sl (Znt/ / J)

> an prder-1/N bias that depends on the partial derivatives and higher-order derivatives of £;.

> same order as the standard error (biased inferences!)
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Why bootstrap bias correction works (theory)

For each bootstrap estimate b = 1, ..., B, we have:

Model:
E(yij|xij, ..) = pij = exp(aj +yj + x;jf)
(weighted) PML estimation:

Boa,y) = argén?;li = Z Wi btij (B, @i, vj)
., =

> For the resampling bootstrap, each bootstrap weight Wj; ;, is a random integer (0, 1,2, ...)
> For the fractional weight bootstrap, each Wj; , is a continuous random variable.

> In either case, E(Wj; ) = Var(W;;) = 1.
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Why bootstrap bias correction works (theory)

For each bootstrap estimate b = 1, ..., B, we have:

Model:
E(yij|xij, ..) = pij = exp(aj +yj + x;jf)
(weighted) PML estimation:

Boa,y) = argén?;li = Z Wi btij (B, @i, vj)
., =

> For the resampling bootstrap, each bootstrap weight Wj; ;, is a random integer (0, 1,2, ...)
> For the fractional weight bootstrap, each Wj; , is a continuous random variable.

> In either case, E(Wj; ) = Var(W;;) = 1.

Question: What is E[WI.JZ. 17
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Why bootstrap bias correction works (theory)

For each bootstrap estimate b = 1, ..., B, we have:

Model:
E(yij|xij, ..) = pij = exp(aj +yj + x;jf)
(weighted) PML estimation:

Boa,y) = argén?;li = Z Wi btij (B, @i, vj)
., =

> For the resampling bootstrap, each bootstrap weight Wj; ;, is a random integer (0, 1,2, ...)
> For the fractional weight bootstrap, each Wj; , is a continuous random variable.

> In either case, E(Wj; ) = Var(W;;) = 1.

ion: ; 2 2 7 _
Question: What is E[Wij,b]? E[le,b] =2
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Why bootstrap bias correction works (theory)

For each bootstrap estimate b = 1, ..., B, we have:

Model:
E(yij|xij, ..) = pij = exp(aj +yj + x;jf)
(weighted) PML estimation:

Boa,y) = argén?;li = Z Wi btij (B, @i, vj)
., =

The asymptotic bias of each bootstrap estimate is:

N ZE(WZ *ﬁka’l {‘1:

-~ H! 1 ij,b"ij ij ) 1 N
EB-f)~r — |- ————— L+ —
N-T\ NG 3hw; b(“ 75 2N Z‘

( j#i Ubf e al) [Zf*" (ngfu i )]
BT
(Zm *ﬁk)(/’;’) [Zi#f(“)/fb[u i )]
iz Wijb

5B (w2, ¢)

B 17 &
4+
7Y ZNjZ;

Jj=1 Z/-ﬁ i, bf
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Why bootstrap bias correction works (theory)

For each bootstrap estimate b = 1, ..., B, we have:

Model:
E(yij|xij, ..) = pij = exp(aj +yj + x;jf)
(weighted) PML estimation:

B,a,y) = arg;nax L= Z Wi ntii (B, @i, vj)

i.j
As N — oo, we have
. - Y Z/E(g[;ﬁka: [;{t,) ;N (Z#f*ﬂka’ ')[2/¢;E(ngi [Ifjxi)]
E(ﬁ_ﬁ)z/\/_1 _NZ N %% +ﬁz pra—
= ji Lij P (Zj 7 ,)
Bryj Yj —*ﬁ Y, Yj Yj
Sl G IR N 1| D G|
N # N =
NS ST 2N & (Zm Ym)

Each bootstrap estimate has two times the bias of the original estimate.
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Other corrections

Analytical methods
Derive analytical formulas for the bias using Taylor expansions:

> Point estimates: Fernandez-val and Weidner (2016), Weidner and Zylkin (2021)
> “HC2”/ “CR2” Standard errors: Weidner and Zylkin (2021)

Jackknife
For standard error corrections:

» each jackknife sample holds out one observation at a time

> compute “jackknife SEs” based on the standard deviation of the jackknife samples

For correcting point estimates:
> “N-jackknife”: hold out one country at a time to inflate the 1/N bias
> “split-panel jackknife” (SP)): hold out half the exporters/importers at time (4 subsamples)
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Horse race!

For the two-way gravity model
> Simulate yj; = exp(a; + yj + X f) wjj
> Estimate using both PPML and Gamma PML

» Standard error corrections (for both estimators): analytical (“HC2”), different flavors of bootstrap,
jackknife

> Bias corrections (for Gamma only): analytical, different flavors of bootstrap, split-panel jackknife

For the three-way gravity model
> Simulate yjj; = exp(ajt + yje + 1ij + Xijt B wjjt
> Estimate using PPML only

> Experiment with different corrections for both the point estimates and the standard errors

For all simulations: 1000 replications, 1000 bootstrap draws per replication, N = 50 or 100
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Simulation results: Standard errors for 2-way PPML
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The red line is the standard deviation of estimates across simulations




Simulation results: Standard errors for 2-way Gamma PML
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Jackknife SEs have very wide dispersion (another look)
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longer lines show means

This is a “strip plot” for PPML estimates from case 2.




Table: Improving coverage for

two-way FE-PML gravity estimators (case 1)

N=50
Bias Bias/SD

N=100

SE/SD  95% Cov. Bias Bias/SD  SE/SD 95% Cov.

A. PPML (case 1)
PPML, uncorrected -0.001 -0.058

PPML with corrected SEs/Cls
Bootstrap SEs
2-step bootstrap SEs
FRW bootstrap SEs
Jackknife SEs
Analytical (HC2) SEs

B. Gamma PML (case 1)
Gamma PML, uncorrected 0.037 1.092

Re-centered Gamma PML
Analytical BC
Bootstrap BC
2-step Bootstrap BC
FRW boot BC
Split-panel Jackknife BC
Node Jackknife BC

Fully corrected Gamma PML (top 3 + selected others)
SPJ + bootstrap SEs
Node J. + bootstrap SEs
Analytical + bootstrap SEs
Bootstrap + bootstrap SEs
FRWB + FRWB SEs
Analytical + HC2 SEs
SPJ + Jackknife SEs

0.935 0.936

0.911 0.722

Notes: 1,000 repetitions + 1,000 bootstrap trials per repetition. Model:

Vit = exp(a; +y; +0.5x;)@j. Case 1 s the case where PPML is correctly specified.
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PPML with corrected SEs/Cls
Bootstrap SEs -0.001 -0.058 1.003 0.954
2-step bootstrap SEs -0.001 -0.058 1.003 0.954
FRW bootstrap SEs -0.001 -0.058 0.926 0.938
Jackknife SEs -0.001 -0.058 1.032 0.955
Analytical (HC2) SEs -0.001 -0.058 0.982 0.950
B. Gamma PML (case 1)
Gamma PML, uncorrected 0.037 1.092 0.911 0.722
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Gamma PML, uncorrected 0.037 1.092 0.911 0.722
Re-centered Gamma PML
Analytical BC 0.010 0.256 0.789 0.875
Bootstrap BC 0.016 0.438 0.850 0.870
2-step Bootstrap BC 0.016 0.424 0.832 0.865
FRW boot BC 0.020 0.569 0.867 0.854
Split-panel Jackknife BC 0.011 0.293 0.828 0.884
Node Jackknife BC 0.008 0.208 0.798 0.881

Fully corrected Gamma PML (top 3 + selected others)
SPJ + bootstrap SEs
Node J. + bootstrap SEs
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Bootstrap + bootstrap SEs
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Table: Improving coverage for two-way FE-PML gravity estimators (case 1)

N=50 N=100
Bias  Bias/SD SE/SD  95% Cov. Bias Bias/SD  SE/SD 95% Cov.
A. PPML (case 1)
PPML, uncorrected -0.001 -0.058 0.935 0.936 .0006 .0474 9377 939
PPML with corrected SEs/Cls
Bootstrap SEs -0.001 -0.058 1.003 0.954 .0006 0474 9698 944
2-step bootstrap SEs -0.001 -0.058 1.003 0.954 .0006 0474 9699 944
FRW bootstrap SEs -0.001 -0.058 0.926 0.938 .0006 .0474 9309 934
Jackknife SEs -0.001 -0.058 1.032 0.955 .0006 .0474 9878 945
Analytical (HC2) SEs -0.001 -0.058 0.982 0.950 .0006 0474 9633 947
B. Gamma PML (case 1)
Gamma PML, uncorrected 0.037 1.092 0.911 0.722 .0225 1.2356 9274 695
Re-centered Gamma PML
Analytical BC 0.010 0.256 0.789 0.875 .0051 2479 8232 874
Bootstrap BC 0.016 0.438 0.850 0.870 .0087 4464 871 870
2-step Bootstrap BC 0.016 0.424 0.832 0.865 .0080 4030 8533 873
FRW boot BC 0.020 0.569 0.867 0.854 .0051 .2479 9154 917
Split-panel Jackknife BC 0.011 0.293 0.828 0.884 .0063 3224 8609 .880
Node Jackknife BC 0.008 0.208 0.798 0.881 .0044 2167 .8292 882

Fully corrected Gamma PML (top 3 + selected others)

SPJ + bootstrap SEs

Node J. + bootstrap SEs
Analytical + bootstrap SEs
Bootstrap + bootstrap SEs
FRWB + FRWB SEs
Analytical + HC2 SEs

SPJ + Jackknife SEs

Notes: 1,000 repetitions + 1,000 bootstrap trials per repetition. Model: y;¢ = exp(a; +y; + 0.5x;) w;;. Case 1 is the case where PPML is correctly specified.



Table: Improving coverage for two-way FE-PML gravity estimators (case 1)

N=50 N=100
Bias  Bias/SD SE/SD  95% Cov. Bias Bias/SD  SE/SD 95% Cov.
A. PPML (case 1)
PPML, uncorrected -0.001 -0.058 0.935 0.936
PPML with corrected SEs/Cls
Bootstrap SEs -0.001 -0.058 1.003 0.954
2-step bootstrap SEs -0.001 -0.058 1.003 0.954
FRW bootstrap SEs -0.001 -0.058 0.926 0.938
Jackknife SEs -0.001 -0.058 1.032 0.955
Analytical (HC2) SEs -0.001 -0.058 0.982 0.950
B. Gamma PML (case 1)
Gamma PML, uncorrected 0.037 1.092 0.911 0.722
Re-centered Gamma PML
Analytical BC 0.010 0.256 0.789 0.875
Bootstrap BC 0.016 0.438 0.850 0.870
2-step Bootstrap BC 0.016 0.424 0.832 0.865
FRW boot BC 0.020 0.569 0.867 0.854
Split-panel Jackknife BC 0.011 0.293 0.828 0.884
Node Jackknife BC 0.008 0.208 0.798 0.881
Fully corrected Gamma PML (top 3 + selected others)
SPJ + bootstrap SEs 0.011 0.293 0.993 0.932
Node J. + bootstrap SEs 0.008 0.208 0.957 0.926
Analytical + bootstrap SEs 0.010 0.256 0.946 0.924
Bootstrap + bootstrap SEs 0.016 0.438 1.018 0.918
FRWB + FRWB SEs 0.020 0.569 0.891 0.865
Analytical + HC2 SEs 0.010 0.256 0.806 0.884
SPJ + Jackknife SEs 0.011 0.293 0.933 0918

Notes: 1,000 repetitions + 1,000 bootstrap trials per repetition. Model: y;¢ = exp(a; +y; + 0.5x;) w;;. Case 1 is the case where PPML is correctly specified.




Table: Improving coverage for two-way FE-PML gravity estimators (case 1)

N=50 N=100
Bias  Bias/SD SE/SD  95% Cov. Bias Bias/SD  SE/SD 95% Cov.
A. PPML (case 1)
PPML, uncorrected -0.001 -0.058 0.935 0.936 0.001 0.047 0.938 0.939
PPML with corrected SEs/Cls
Bootstrap SEs -0.001 -0.058 1.003 0.954 0.001 0.047 0.9698 0.944
2-step bootstrap SEs -0.001 -0.058 1.003 0.954 0.001 0.047 0.9699 0.944
FRW bootstrap SEs -0.001 -0.058 0.926 0.938 0.001 0.047 0.9309 0.934
Jackknife SEs -0.001 -0.058 1.032 0.955 0.001 0.047 0.9878 0.945
Analytical (HC2) SEs -0.001 -0.058 0.982 0.950 0.001 0.047 0.9633 0.947
B. Gamma PML (case 1)
Gamma PML, uncorrected 0.037 1.092 0.911 0.722 0.023 1.236 0.927 0.695
Re-centered Gamma PML
Analytical BC 0.010 0.256 0.789 0.875 0.005 0.248 0.823 0.874
Bootstrap BC 0.016 0.438 0.850 0.870 0.009 0.446 0.871 0.870
2-step Bootstrap BC 0.016 0.424 0.832 0.865 0.008 0.403 0.853 0.873
FRW boot BC 0.020 0.569 0.867 0.854 0.011 0.564 0.915 0917
Split-panel Jackknife BC 0.011 0.293 0.828 0.884 0.006 0.322 0.861 0.880
Node Jackknife BC 0.008 0.208 0.798 0.881 0.004 0.217 0.829 0.882
Fully corrected Gamma PML (top 3 + selected others)
SPJ + bootstrap SEs 0.011 0.293 0.993 0.932 0.006 0.322 1.078 0.946
Node J. + bootstrap SEs 0.008 0.208 0.957 0.926 0.004 0.217 1.038 0.952
Analytical + bootstrap SEs 0.010 0.256 0.946 0.924 0.005 0.248 1.031 0.945
Bootstrap + bootstrap SEs 0.016 0.438 1.018 0.918 0.009 0.446 1.091 0.938
FRWB + FRWB SEs 0.020 0.569 0.891 0.865 0.011 0.564 0.985 0.892
Analytical + HC2 SEs 0.010 0.256 0.806 0.884 0.005 0.248 0.832 0.876
SPJ + Jackknife SEs 0.011 0.293 0.933 0918 0.006 0.322 0.893 0.874

Notes: 1,000 repetitions + 1,000 bootstrap trials per repetition. Model: y;¢ = exp(a; +y; + 0.5x;) w;;. Case 1 is the case where PPML is correctly specified.




Table: Improving coverage for two-way FE-PML gravity estimators (case 2)

N=50 N=100
Bias Bias/SD  SE/SD  95% Cov. Bias Bias/SD  SE/SD 95% Cov.
A. PPML (case 2)
PPML, uncorrected -0.003 -0.054 0.770 0.874 0.003 0.011 0.845 0.906
PPML with corrected SEs/Cls
Bootstrap SEs -0.003 -0.054 0.832 0.906 0.003 0.011 8589 917
2-step bootstrap SEs -0.003 -0.054 0.833 0.906 0.003 0.011 8595 917
FRW bootstrap SEs -0.003 -0.054 0.720 0.848 0.003 0.011 783 882
Jackknife SEs -0.003 -0.054 0.969 0911 0.003 0.011 9167 .886
Analytical (HC2) SEs -0.003 -0.054 0.866 0911 0.003 0.011 9049 927
B. Gamma PML (case 2)
Gamma PML, uncorrected -0.001 -0.023 0.958 0.943 0.0004 0.030 0.954 0.939
Re-centered Gamma PML
Analytical BC -0.001 -0.023 0.915 0.926 0.0005 0.031 0.921 0.929
Bootstrap BC -0.001 -0.024 0.926 0.935 0.0004 0.030 0.925 0.928
2-step Bootstrap BC -0.001 -0.046 0.928 0.933 0.0003 0.021 0.877 0.913
FRW boot BC -0.001 -0.019 0.930 0.933 0.0005 0.032 0.929 0.931
Split-panel Jackknife BC -0.001 -0.022 0.867 0.909 0.0005 0.031 0.924 0.929
Node Jackknife BC -0.000 -0.015 0.901 0.925 -0.0003 -0.019 0.919 0.927
Fully corrected Gamma PML (top 3 + selected others)
SPJ + Jackknife SEs -0.001 -0.022 1.002 0.950 0.0005 0.031 0.965 0.939
Node J. + Jackknife SEs -0.000 -0.015 0.986 0.951 -0.0003 -0.019 0.960 0.939
Analytical + jackknife SEs -0.001 -0.023 1.001 0.949 0.0005 0.031 0.963 0.938
Bootstrap + bootstrap SEs -0.001 -0.024 0.928 0.932 0.0004 0.030 0.908 0.920
FRWB + FRWB SEs -0.001 -0.019 0.855 0.906 0.0005 0.032 0.867 0.909
Analytical + HC2 SEs -0.001 -0.023 0.934 0.935 0.0004 0.030 0.963 0.943
Uncorrected + boot. SEs -0.001 -0.023 0.959 0.940 0.0004 0.030 0.937 0.933
Uncorrected + jack SEs -0.001 -0.023 1.048 0.960 0.0004 0.030 0.996 0.948

Notes: 1,000 repetitions + 1,000 bootstrap trials per repetition. Model: y;r = exp(e; + y; + 0.5xi;) wjj. Case 2 is the case where Gamma PML is correctly specified.




Takeaways from Simulations

> Have also done preliminary simulations with the three-way gravity model estimated w/ PPML

» similar results, though not ready to share

Zylkin (Richmond) Bootstrap for Gravity Models



Takeaways from Simulations

Best overall methods

» For correcting SEs only: re-sample bootstrap, HC2, jackknife*
> For correcting both point estimates and SEs:

o jackknife or analytical re-centering + bootstrap SEs
o bootstrap re-centering + bootstrap SEs
o other combinations specific to each model + estimator
Other results
> DO NOT USE FRACTIONAL WEIGHT BOOTSTRAP!
> Jackknife SEs tend to be over-conservative, can be wildly over-conservative due to large variance

> Computationally efficient (2-step and 3-step) bootstrap variants work well.

Zylkin (Richmond) Bootstrap for Gravity Models



Empirical application (3 way PPML)

For the empirical application, | use a three-way gravity model:
Yiit = exp (@it + yje + nij + BFTAjjt) wijt.

> Estimate with PPML (will have 1/N bias due to @ and y;;)
> Data: same as Weidner and Zylkin (Total trade for 165 countries, 1995-2015, every 5 years)

Zylkin (Richmond) Bootstrap for Gravity Models



Empirical application (3 way PPML)

For the empirical application, | use a three-way gravity model:
Yiit = exp (@it + yje + nij + BFTAjjt) wijt.

> Estimate with PPML (will have 1/N bias due to @ and y;;)
> Data: same as Weidner and Zylkin (Total trade for 165 countries, 1995-2015, every 5 years)

Estimate Standard Error
PPML (B) 0821 Cluster-Robust (CR1) 0275
WZ analytical BC (EA) .0857 Weidner-Zylkin CR2 .0305
Avg. bootstrap estimate (EB) .0786 Weidner-Zylkin approx. .0304
Bootstrap BC (28 — fig) 0856 Bootstrap SE 0304
Bootstrap the analytical BC .0818

Zylkin (Richmond) Bootstrap for Gravity Models



Overall takeaways

> Bootstrap methods are effective for improving inference for PML gravity estimators
> How you bootstrap matters

o “Fractional weight” bootstrap performs poorly

> k-step bootstrap offers computational efficiency

When would you want to use bootstrap for bias correction?
» Can correct SEs and point estimates using one procedure rather than two.

> Doesn’t require deriving/coding the analytical formula for the bias

Zylkin (Richmond) Bootstrap for Gravity Models



