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This Appendix first describes an additional simulation exercise based on the trade
data. We then introduce additional notation, definitions, and other technical details that
supplement the formal theorems and remarks presented in Section 3 of the main text.
Proofs of our formal results then follow, starting with a poof of our Proposition 3, which
characterizes the asymptotic distribution of β̂ and its asymptotic bias. This proof natu-
rally lends itself to further discussion of the “large T” results from Remark 2 as well as the
consistency result from Proposition 1, which itself follows as a by-product of Proposition
3. We then demonstrate the uniqueness of this latter result as stated in Proposition 2
and highlight the general inconsistency of other three-way gravity estimators.

After the proofs, we include further supplementary discussions on the downward bias
in the estimated standard errors, on allowing for conditional dependence across pairs in
the trade data, and on how FE-PPML is affected by IPPs in more general settings beyond
the gravity framework.

A.1 Simulation Based on Trade Data

As a additional simulation exercise, we revisit the BACI aggregate trade data we used in
Section 5 and ask: if the estimated effect of an FTA and its standard error were indeed
biased to the degrees implied by our bias corrections, would our corrections be successful
at correctly identifying the bias and improving inference?

To answer this question, we start from the original aggregate trade data and FTA
data but reconstruct the conditional mean λijt as though β = 0.086. That is, we first
adjust the estimated λ̂ijt’s from the original estimation to account for the change in β

and so that the FOC’s for all fixed effects are consistent with β = 0.086. This gives us
new “true” values of the conditional mean that we denote by λ(1)

ijt . The original data is
therefore assumed to have been generated by yijt = λ

(1)
ijtωijt, where the true disturbance

ωijt is backed out using ωijt = yijt/λ
(1)
ijt .
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Next, we choose a DGP for ωijt that can reproduce the biases implied by our cor-
rections. Taking our cues from DGP IV, which we found earlier to produce a down-
ward bias in β̂, we consider a DGP where the conditional variance of yijt has the form
Var[yijt|.] = aλijt + bFTAλ2

ijt. That is, we allow for some overdispersion that depends on
the regressor of interest, as in DGP IV. We choose the two parameters a and b in order
to come close to matching the following three values: (i) the bias in β̂, (ii) the standard
deviation of β̂ (assumed to be 0.03), (iii) the bias of the standard error of β̂. To keep
things simple, all of our simulations sample new values for ωijt only, holding λ(1)

ijt fixed. As
in the main text, we use 5,000 replications and assume ρ = 0.3. For our chosen values of
a and b—a = 200, 000, b = 0.08—we obtain an average β̂ of 0.0823, an average standard
error of 0.0267, and a standard deviation of 0.0307. The uncorrected coverage is 0.9078.

When our preferred bias corrections are applied, they do not completely solve the
coverage problem but do induce across-the-board improvements. The average corrected
β̂ using the analytical bias correction is 0.0842 and the corrected standard error is 0.0290.
Coverage improves as well, but only to 0.9210. As discussed in the main text, one im-
portant factor that limits the improvement in coverage is the fact that applying bias
corrections to the point estimates increases their variance. In this case, the standard
deviation of the corrected estimate is 0.0321.

Turning to the jackknife bias correction, we find as before that it does a superior job
of bias reduction than the analytical correction, producing a average corrected estimate
of 0.0851. However, the standard deviation of the jackknife-corrected estimates is 0.0371,
echoing our previous finding that the improved bias reduction performance of the jackknife
comes at a steep penalty in terms of increased variance. As a result, the coverage we obtain
when we combine the jackknife with the corrected standard errors is only 0.8756.

Interestingly, if we only use the correction to the standard errors, i.e., without applying
any correction to the point estimates, we obtain a coverage ratio of 0.9312, which is
better than if we also use the analytical correction. It nonetheless remains true that using
corrections to both the point estimates and standard errors leads to an improvement
in coverage, as we have consistently found throughout our results. In general, these
simulations reinforce our earlier conclusion that bias corrections, though helpful, are not
necessarily a panacea to the issues we raise in the paper.
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A.2 Additional Notation and Definitions

It is convenient to define the log-likelihood as a function of the index vector πij as follows,

`ij(β, αi, γj) =: `ij(β, πij), where πij =


πij1
...

πijT

 :=


αi1 + γj1

...
αiT + γjT

 .
In this appendix, we will also be more explicit than in the main text in distinguishing
true parameter values β0, α0

it, γ0
jt, and the corresponding π0

ij and ϑ0
ijt, from their generic

equivalents. For example, the Sij, Hij and Gij that were already defined in the main text
can more formally be written as

Sij := −
∂2`ij(β0, π0

ij)
∂πij

, Hij := −
∂2`ij(β0, π0

ij)
∂πij ∂π′ij

,

and

Gij,tsr =
∂3`ij(β0, π0

ij)
∂πijt ∂πijs ∂πijr

=



−ϑ0
ijt

(
1− ϑ0

ijt

) (
1− 2ϑ0

ijt

)∑
τ yijτ if t = s = r,

−ϑ0
ijs

(
1− 2ϑ0

ijs

)
ϑ0
ijt

∑
τ yijτ if s = r 6= t,

−ϑ0
ijs

(
1− 2ϑ0

ijs

)
ϑ0
ijr

∑
τ yijτ if t = s 6= r,

−ϑ0
ijt

(
1− 2ϑ0

ijt

)
ϑ0
ijs

∑
τ yijτ if r = t 6= s,

−2ϑ0
ijrϑ

0
ijsϑ

0
ijt

∑
τ yijτ if r 6= s 6= t 6= r.

The T × K matrix x̃ij that was informally introduced in the main text as a two-way
within-transformation of xij, can be formally defined by x̃ij = xij − αxi − γxj , where αxi
and γxj are T ×K matrices that minimize

N∑
i=1

∑
j∈N\{i}

Tr
[(
xij − αxi − γxj

)′
H̄ij

(
xij − αxi − γxj

)]
, (16)

subject to appropriate normalizations on αxi and γxj (e.g. ι′Tαxi = ι′Tγ
x
j = 0, where ιT =

(1, . . . , 1)′ is a T-vector of ones). Each within-transformed regressor vector x̃ij,k can be
interpreted as containing the residuals left after partialing out xij,k with respect to any i-
and j-specific components and weighting by H̄ij.1

1While we present the computation of x̃ij as a two-way within-transformation to preserve the analogy
with Fernández-Val and Weidner (2016), each individual element x̃ijt,k can also be shown to be equivalent
(subject to a normalization) to a three-way within-transformation of xijt,k with respect to it, jt, and ij
and weighting by λijt. Readers familiar with Larch, Wanner, Yotov, and Zylkin (2019) may find the
latter presentation easier to digest.
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A.2.1 Analytical Bias Correction Formulas

The analytical bias correction discussed in Section 3.4 orequires estimates of the expres-
sions WN , BN , DN defined in Proposition 3. For this, we first require plugin objects ̂̃xij,
Ŝij, Ĥij, Ĥ ij, and Ĝij — these objects are formed in the obvious way by replacing λijt
with λ̂ijt and ϑijt with ϑ̂ijt := λ̂ijt/

∑
τ λ̂ijτ where needed. Then, the B̂N and D̂N are

K-vectors with elements given by

B̂k
N = − 1

N − 1

N∑
i=1

Tr


 ∑
j∈N\{i}

Ĥ ij

† ∑
j∈N\{i}

Ĥij
̂̃xij,k Ŝ ′ij


+ 1

2 (N − 1)

N∑
i=1

Tr


 ∑
j∈N\{i}

Ĝij
̂̃xij,k

 ∑
j∈N\{i}

Ĥ ij

†  ∑
j∈N\{i}

Ŝij Ŝ
′
ij

 ∑
j∈N\{i}

Ĥ ij

†
 ,

D̂k
N = − 1

N − 1

N∑
j=1

Tr


 ∑
i∈N\{j}

Ĥ ij

† ∑
i∈N\{j}

Ĥij
̂̃xij,k Ŝ ′ij


+ 1

2 (N − 1)

N∑
j=1

Tr


 ∑
i∈N\{j}

Ĝij
̂̃xij,k

 ∑
i∈N\{j}

Ĥ ij

†  ∑
i∈N\{j}

Ŝij Ŝ
′
ij

 ∑
i∈N\{j}

Ĥ ij

†
 ,

and we have

Ŵ = 1
N (N − 1)

N∑
i=1

∑
j∈N\{i}

̂̃x′ij Ĥ ij
̂̃xij,

The replacement of N with N − 1 in B̂k
N and D̂k

N stems from a degrees-of-freedom cor-
rection. This correction is needed because creating plug-in values for the E

(
S ′ijHij

∣∣∣xij,k)
and E

(
Sij S

′
ij

∣∣∣xij,k) objects that appear in Proposition 3 requires computing terms of the
form E[y2

ijt] and E[yijsyijt], as illustrated in Remark 1.

A.2.2 Details on large T bias expansion

We also want to explain the result in Remark 2 of the main text in more detail here by
rewriting the bias terms BN and DN to illuminate the role of the time dimension. Using
generic definitions for Sij, Hij, Gij, and x̃ij (e.g., Sij := ∂`ij/∂πij, Hij := ∂2`ij/∂πij∂π

′
ij,

etc.), the formulas for the asymptotic distribution in Proposition 3 apply generally to
M-estimators based on concave objective functions `ij(β, αit, γjt). Unlike in the two-way
FE-PPML case, these formulas do not reduce to zero when we further specialize them to
the profiled Poisson pseudo-likelihood shown in (11), but we still find it instructive to do
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so (e.g., to discuss the large T limit from Remark 2). For that purpose, we define the
T × T matrix Mij = IT − ϑijι′T . Furthermore, let Λij be the T × T diagonal matrix with
diagonal elements λijt, and for i, j ∈ {1, . . . , N} define the T × T matrices

Qi = 1
N − 1

 ∑
j∈N\{i}

Mij ΛijM
′
ij

† ∑
j∈N\{i}

Mij E(yijy′ij)M ′
ij

 ∑
j∈N\{i}

Mij ΛijM
′
ij

† ,
Rij = E(yijy′ij)M ′

ij

 1
N − 1

∑
j′∈N\{i}

Mij ΛijM
′
ij

† ΛijM
′
ij.

The bias term BN = (Bk
N) in Proposition 3 can then be expressed as

Bk
N = 1

N(N − 1)

N∑
i=1

∑
j∈N\{i}

[
−ι
′
T Rij x̃ij,k
ι′Tλij

+
λ′ij Qi ΛijM

′
ij x̃ij,k

ι′Tλij

]
, (17)

and an analogous formula for DN follows by interchanging i and j appropriately. As long
as there is only weak time dependence between observations the matrix objects Rij and
QiΛijM

′
ij above are both of order 1 as T →∞, such that both terms in brackets in (17)

are likewise of order 1. This explains the result stated in Remark 2 of the main text.

A.3 Proof of Proposition 3

Known result for two-way fixed effect panel models

Our proof of Proposition 3 relies on results from Fernández-Val and Weidner (2016)
– denoted FW in the following. That paper considers a standard panel setting where
individuals i are observed over time periods t, and mixing conditions (as opposed to
conditional independence assumptions) are imposed across time periods. By contrast, we
consider a pseudo-panel setting, where the two panel dimensions are labelled by exporters
i and importers j, and we impose conditional independence assumptions across both i

and j here (see also Dzemski, 2019, who employs those results in a directed network
setting where outcomes are binary, and Graham, 2017, for the undirected network case.)
Given those differences—and before introducing any further complications—we briefly
want to restate the main result in FW for the two-way pseudo-panel case. Outcomes Yij,
i, j = 1, . . . , N , conditional on all the strictly exogenous regressors X = (Xij), fixed effect
N -vectors α and γ, and common parameters β are assumed to be generated as

Yij | X,α, γ, β ∼ fY (· | Xij, αi, γj, β),
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where the conditional distribution fY is known, up to the unknown parameters αi, γj ∈ R
and β ∈ RK . It is furthermore assumed that αi and γj enter the distribution function
only through the single index πij = αi + γj; that is, the log-likelihood can be defined by

`ij(β, πij) = log fY (Yij | Xij, αi, γj, β).

The maximum likelihood estimator for β is given by

β̂ = argmax
β∈RK

max
α,γ∈RN

L(β, α, γ), L(β, α, γ) =
∑
i,j

`ij(β, αi + γj).

Also, define the K-vector Ξij with components, k = 1, . . . , K,

Ξij,k = α∗i,k + γ∗j,k, (α∗k, γ∗k) = argmin
αi,k,γj,k

∑
i,j

E(−∂π2`ij)
(
E(∂βkαi`ij)
E(∂α2

i
`ij)

− αi,k − γj,k
)2

,

where here and in the following all expectations are conditional on regressors X = (Xij),
and on the parameters α, γ, β. For q ∈ {0, 1, 2}, the (within-transformation) differentia-
tion operator Dβαqi = Dβγqj is defined by

Dβαqi `ij = ∂βαqi `ij − ∂αq+1
i
`ij Ξij, Dβγqj `ij = ∂βγqj `ij − ∂γq+1

j
`ij Ξij. (18)

Theorem 1. Assume that

(i) Conditional on X, α0, γ0, β0 the outcomes Yij are distributed independently across
i and j with

Yij | X,α0, γ0, β0 ∼ exp[`ij(β0, π0
ij)],

where π0
ij = α0

i + γ0
j .

(ii) The map (β, π) 7→ `ij(β, π) is four times continuously differentiable, almost surely.
All partial derivatives of `ij(β, π) up to fourth order are bounded in absolute value
by a function m(Yit, Xit) > 0, almost surely, uniformly over a convex compact set
B ⊂ R

dimβ+1, which contains an ε-neighbourhood of (β0, π0
ij) for all i, j, N , and

some ε > 0. Furthermore, maxi,j E[m(Yij, Xij)]8+ν is uniformly bounded over N ,
almost surely, for some ν > 0.

(iii) For all N , the function (β, α, γ) 7→ L(β, α, γ) is almost surely strictly concave over
RK+2N , apart from one “flat direction” described by the transformation αi 7→ αi + c,
γj 7→ γj−c, which leaves L(β, α, γ) unchanged for all c ∈ R. Furthermore, there exist
constants bmin and bmax such that for all (β, π) ∈ B, 0 < bmin ≤ −E

[
∂α2

i
`ij(β, π)

]
≤

bmax, almost surely, uniformly over i, j, N .
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In addition, assume that the following limits exist

B = lim
N→∞

− 1
N

∑
i,j

E
(
∂αi`ijDβαi`ij + 1

2Dβα2
i
`ij
)

∑
j′ E

(
∂α2

i
`ij′

)
 ,

D = lim
N→∞

− 1
N

∑
i,j

E
(
∂γj`ijDβγj`ij + 1

2Dβγ2
j
`ij
)

∑
i′ E

(
∂γ2

j
`i′j
)

 ,
W = lim

N→∞

− 1
N2

∑
i,j

E
(
∂ββ′`ij − ∂α2

i
`ijΞijΞ′ij

) ,
where expectations are conditional on X, α, γ, β. Finally, assume that W > 0. Then, as
N →∞, we have

N
(
β̂ − β0

)
→d W

−1N (B +D, W ),

Remarks:

(a) This is just a reformulation of Theorem 4.1 in FW to the case of pseudo-panels,
and the proof is provided in that paper. Since we consider only strictly exogenous
regressors, all the analysis is conditional on X; and the bias term B simplifies here,
since conditional on X (and the other parameters), we assume independence across
both i and j. Thus, no Nickell-type bias (Nickell, 1981; Hahn and Kuersteiner,
2002) appears here, but we still have incidental parameter biases because the model
is nonlinear (Neyman and Scott, 1948; Hahn and Newey, 2004).

(b) In the original version of this theorem, the sums in the definitions of L(β, α, γ), B,
D, and W run over all possible pairs (i, j) ∈ {1, . . . , N}2. However, for the trade
application in the current paper we assume we only have observations for i 6= j;
that is, those sums over i and j only run over the set {(i, j) ∈ {1, . . . , N}2 : i 6= j}
of N(N − 1) observed country pairs. The sum over j′ (in B) then also only runs
over j′ 6= i, and the sum over i′ (in D) only runs over i′ 6= j. It turns out that those
changes make no difference to the proof of the theorem, because the proportion of
missing observations for each i and j is asymptotically vanishing. For that reason
it also does not matter whether we change the 1/N2 in W to 1/[N(N − 1)], or
whether we change N

(
β̂ − β0

)
to

√
N(N − 1)

(
β̂ − β0

)
. The same equivalence

holds throughout our own results for applications in which researchers wish to use
observations for which i = j (simply replace N − 1 with N where appropriate.) It

7



also does not matter for the proof that the number of exporters and importers is
the same, since this is already allowed for in FW’s existing results. If we let I be
the number of exporters and J be the number of importers, FW’s results apply so
long as I and J grow large at the same rate.

(c) More generally, careful examination of these proofs and results reveals that all ex-
plicit appearances of N and N − 1 in the definitions of W , B, and D actually play
no role in the fully expressed formula for the asymptotic bias, i.e., N−1W (B +D).
Thus, there is no need to adjust the terms that explicitly depend on N if some of
the data are missing. So long as the missing data occur at random, applying the
formulas as written should still generally be expected to deliver an asymptotically
valid bias correction. A similar observation applies for missing values in the three-
way model. That said, if the missing values occur in such a way that some of the
αi’s or γj’s appear only a small number of times in the data, they will tend to be
estimated with a larger degree of estimation noise than the other fixed effects, which
could affect the performance of bias corrections based on these formulas in practice.

(d) The above theorem assumes that the log-likelihood `ij(β, αi +γj) for Yij | X,α, γ, β
is correctly specified. This is an unrealistic assumption for the PPML estima-
tors in this paper, where we only want to assume that the score of the pseudo-
log-likelihood has zero mean at the true parameters, that is, E

[
∂β`ij(β0, α0

i +
γ0
j ) | Xij, α

0
i , γ

0
j , β

0
]

= 0 and E
[
∂αi`ij(β0, α0

i + γ0
j ) | Xij, α

0
i , γ

0
j , β

0
]

= 0 and
E
[
∂γj`ij(β0, α0

i + γ0
j ) | Xij, α

0
i , γ

0
j , β

0
]

= 0. This extension to “conditional mo-
ment models” is discussed in Remark 3 of FW. The statement of the theorem then
needs to be changed as follows:

N
(
β̂ − β0

)
→d W

−1N (B +D, Ω), (19)

where the definition of W is unchanged, but the expression of B = B1 + B2, D =
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D1 +D2 and Ω now read

B1 = lim
N→∞

− 1
N

∑
i,j

E (∂αi`ijDβαi`ij)∑
j′ E (∂αi2`ij′)

 ,
B2 = lim

N→∞

1
2

1
N

∑
i

[∑
j E(∂αi`ij)2

]∑
j E(Dβαi2`ij)[∑

j E (∂αi2`ij)
]2

 ,

D1 = lim
N→∞

− 1
N

∑
j

∑
i E
[
∂γj`ijDβγj`ij

]
∑
i E
(
∂γj2`ij

)
 ,

D2 = lim
N→∞

1
2

1
N

∑
j

∑
i

[
E(∂γj`ij)2

]∑
i E(Dβγj2`ij)[∑

i E
(
∂γj2`ij

)]2
 ,

Ω = lim
N→∞

 1
N2

∑
i,j

E [Dβ`ij(Dβ`ij)′]
 . (20)

These are the formulas that we have to use as a starting point for the bias results
derived in this paper.

Our task in the following is to translate and generalize the conditions, statement, and
proof of Theorem 1, as extended in (19) and (20), to the case of the three-way PPML
estimator discussed in the main text.

Regularity conditions for Proposition 3

The following regularity conditions are required for the statement of Proposition 3 to
hold.

Assumption A. (i) Conditional on x = (xijt), α0 = (α0
it), γ0 = (γ0

jt), η0 = (η0
ij) and

β0, the outcomes yij = (yij,1, . . . , yij,T )′ are distributed independently across i and j,
and the conditional mean of yijt is given by equation (8) for all i, j, t.

(ii) The range of xijt, α0
it and γ0

jt is uniformly bounded, and there exists ν > 0 such that
E(y8+ν

ijt |xijt, αit, γjt, ηij) is uniformly bounded over i, j, t, N .

(iii) limN→∞ WN > 0, with WN as defined in Proposition 3.

Those assumptions are very similar to those in Theorem 1 above: Assumption A(i)
is analogous to condition (i) in the theorem, except that we only impose the conditional
mean of yijt to be correctly specified, as already discussed in remark (c) above. Notice
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also that this assumption requires conditional independence across i and j, but we do not
have to restrict the dependence of yijt over t for our results.

We consider the Poisson log-likelihood in this paper, which after profiling out ηij
gives the pseudo-log-likelihood function `ij(β, αit, γjt) defined in equation (11). This log-
likelihood is strictly concave and arbitrarily often differentiable in the parameters, so
corresponding assumptions in Theorem 1 are automatically satisfied. Assumption A(ii) is
therefore already sufficient for the corresponding assumptions (ii) and (iii) in Theorem 1.
Finally, Assumption A(iii) simply corresponds to the condition W > 0, which is just an
appropriate non-collinearity condition on the regressors xijt.

Translation to our main text notation

The main difference between Theorem 1 in the Appendix and Proposition 3 in the main
text is that Theorem 1 only covers the case where πij = αi + γj is a scalar, while in
our model in the main text αi, γj and πij = αi + γj are all T -vectors. We can impose
additional normalizations on those T -vectors, because the profile likelihood L(β, α, γ) in
(10) is invariant under parameter transformations αi 7→ αi + ci ιT and γj 7→ γj + dj ιT

for arbitrary ci, dj ∈ R, where ιT = (1, . . . , 1)′ is the T -vector of ones.2 In the following
we choose the normalizations ι′Tαi = 0 and ι′Tγj = 0, implying ι′Tπij = 0 for all i, j.
Accounting for this normalization we actually only have (T − 1) fixed effects αi and γj

for each i, j here. Theorem 1 is therefore directly applicable to the case T = 2, but for
T > 2 we need to provide an appropriate extension.

The appropriate generalization of the operator Dβαqi = Dβγqj in (18) to the case of
vector-valued αi and γj was described in Section 4.2 of Fernández-Val and Weidner (2018).
Remember the definition of `ij(β, πij) = `ij(β, αi, γj) and x̃ij := xij − αxi − γxj . Then, by
reparameterizing the pseudo-log-likelihood `ij(β, αi, γj) as follows

`∗ij(β, αi, γj) := `ij(β, πij − β′(αxi + γxj )) = `ij(β, αi − β′αxi , γj − β′γxj ) (21)

one achieves that the expected Hessian of L∗(β, α, γ) = ∑
i,j `
∗
ij(β, αi, γj) is block-diagonal,

in the sense that E ∂βαiL∗(β0, α0, γ0) = 0 and E ∂βγjL∗(β0, α0, γ0) = 0 — the definition
of αxi and γxj by equation (16) earlier in this Appendix exactly corresponds to those

2Those invariances αi 7→ αi + ci ιT and γj 7→ γj + dj ιT correspond to parameter transformations that
in the original model could be absorbed by the parameters ηij .
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block-diagonality conditions. With those definitions, we then have that

Dβαqi `ij = ∂βαqi `
∗
ij = x̃ij ∂αq+1

i
`ij.

In particular, we find that our definitions of

WN = 1
N (N − 1)

N∑
i=1

∑
j∈N\{i}

x̃′ij H̄ij x̃ij,

ΩN = 1
N (N − 1)

N∑
i=1

∑
j∈N\{i}

x̃′ij
[
Var

(
Sij

∣∣∣xij)] x̃ij,
in Proposition 3 correspond to − 1

N(N−1)
∑
i,j E

(
∂ββ′`ij − ∂α2

i
`ijΞijΞ′ij

)
and 1

N(N−1)
∑
i,j

E
[
Dβ`ij(Dβ`ij)′

]
in the notation of Theorem 1 and equation (20). Thus, the asymptotic

variance in (19) indeed corresponds to the asymptotic variance formula in Proposition 3.

Inverse expected incidental parameter Hessian

The asymptotic bias results that follow require that we first derive some key properties of
the expected Hessian with respect to the incidental parameters. Remember the definitions
of the 2NT -vector φ = vec(α, γ) from the main text. The expected incidental parameter
Hessian is the 2NT × 2NT matrix given by

H̄ := E [−∂φφ′L(β0, φ0)] =
 H̄(αα) H̄(αγ)

[H̄(αγ)]
′ H̄(γγ)

 ,
where L(β, φ) = L(β, α, γ) is defined in (10), and H̄(αα), H̄(αγ) and H̄(γγ) are NT × NT
submatrices. Here and in the following all expectations are conditional on all the regressor
realizations. The matrix H̄(αα) = E [−∂αα′L(β0, φ0)] is block-diagonal with N non-zero
diagonal T × T blocks given by E

[
−∂αiα′

i
L(β0, φ0)

]
= ∑

j∈N\{i} H̄ij, because for i 6= j we
have E

[
−∂αiα′

j
L(β0, φ0)

]
= 0, since the parameters αi and αj never enter into the same

observation. Analogously, the matrix H̄(γγ) = E [−∂γγ′L(β0, φ0)] is block-diagonal with
N non-zero diagonal T × T blocks given by ∑i∈N\{j} H̄ij. By contrast, the matrix H̄(αγ)

consistents of blocks E
[
−∂αiγ′

j
L(β0, φ0)

]
= H̄ij that are non-zero for i 6= j, because any

two parameters αi and γj jointly enter into T observations. The incidental parameter
Hessian matrix H̄ therefore has strong diagonal T × T blocks of order N , but also many
off-diagonal elements of order one.

The pseudoinverse of H̄ crucially enters in the stochastic expansion for β̂ below. It is
therefore necessary to understand the asymptotic properties of this pseudoinverse H̄†. The
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following lemma shows that H̄† has a structure analogous to H̄, namely, strong diagonal
T × T blocks of order 1/N , and much smaller off-diagonal elements of order 1/N2. We
can write H̄ = D + G, where

D :=
 H̄(αα) 0NT×NT

0NT×NT H̄(γγ)

 , G :=
 0NT×NT H̄(αγ)

[H̄(αγ)]
′ 0NT×NT

 .
The matrix D is block-diagonal, and its pseudoinverse D† is therefore also block-diagonal
with T×T blocks on its diagonal given by

(∑
j∈N\{i} H̄ij

)†
, i = 1, . . . , N and

(∑
i∈N\{j} H̄ij

)†
,

j = 1, . . . , N . Thus, D† has diagonal elements of order N−1. For any matrix A we denote
by ‖A‖max the maximum over the absolute values of all elements of A.

Lemma 1. Under Assumption A we have, as N →∞,∥∥∥H̄† −D†
∥∥∥

max
= OP

(
N−2

)
.

This result is crucial in order to derive the stochastic expansion of β̂. Indeed, as we will
see below, once Lemma 1 is available, then the proof of Proposition 3 is a straightforward
extension of the proof of Theorem 4.1 in FW. Lemma 1 is analogous to Lemma D.1 in
FW, but our proof strategy for Lemma 1 is different here, because we need to account for
the vector-valued nature of αi and γj, which requires new arguments.

Proof of Lemma 1. # Expansion of H̄† in powers of G: The matrix H̄ is (minus) the
expected Hessian of the profile log-likelihood L = ∑

i,j `ij. Because in that objective
function we have already profiled out the fixed effect parameters ηij we have H̄ijιT = 0
for all i, j, where ιT = (1, . . . , 1)′ is the T -vector of ones. This implies that

H̄ (I2N ⊗ ιT ) = 0. (22)

The last equation describes 2N zero-eigenvectors of H̄ (i.e. the eigenvalue zero of H̄ has
multiplicity at least 2N). Because the original log-likelihood function of the Poisson model
was strictly concave in the single index x′ijtβ +αit + γjt + ηij it must be the case that any
additional zero-eigenvalue of H̄ is due to linear transformations of the parameters α and
γ that leave αit + γjt unchanged for all i, j, t.3 There is exactly one such transformation
for every t ∈ {1, . . . , T}, namely the likelihood is invariant under αit 7→ αit + ct and

3Notice that any collinearity problem in the likelihood involving the regression parameters β is ruled
out for sufficiently large sample sizes by our assumption that limN→∞ WN > 0, which guarantees that
the expected Hessian wrt β is positive definite asymptotically.
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γjt 7→ γjt − ct for any ct ∈ R. The expected Hessian H̄ therefore has additional zero-
eigenvectors, which are given by the columns of the 2NT × T matrix

v := (ι′N ,−ι′N)′ ⊗MιT , (23)

where MιT := IT − PιT and PιT := T−1ιT ι
′
T . In the last display we could have used the

identity matrix IT instead of MιT , but we want the columns of v to be orthogonal to the
zero-eigenvectors already given by (22), which is achieved by usingMιT . As a consequence
of this, we have rank(v) = T − 1; that is, since we already have (22) we only find T − 1
additional zero-eigenvectors here. Thus, the total number of zero eigenvalues of H̄ (i.e. the
multiplicity of the eigenvalue zero) is equal to 2N +T − 1. It is easy to verify that indeed

H̄v = 0. (24)

Equations (22) and (24) describe all the zero-eigenvectors of H̄. The projector onto the
null-space of H̄ is therefore given by

Pnull := I2N ⊗ PιT + Pv, (25)

where Pv = v(v′v)†v′. The Moore-Penrose pseudoinverse of H̄ therefore satisfies

H̄ H̄† = H̄† H̄ = I2NT − Pnull = M(ι′N ,−ι
′
N )′ ⊗MιT , (26)

where the RHS is the projector orthogonal to the null-space of H̄ (i.e. the projector onto
the span of H̄). The definition of the Moore-Penrose pseudoinverse guarantees that H̄†

has the same zero-eigenvectors as H̄; that is, we also have H̄†v = 0 and H̄† (I2N ⊗ ιT ) = 0.
The last equation together with the symmetry of H̄† implies that

(I2N ⊗ PιT ) H̄† = 0. (27)

Next, similar to the above argument for H̄ we have that the only zero-eigenvector of the
T × T matrices ∑j∈N\{i} H̄ij and

∑
i∈N\{j} H̄ij is given by ιT , and therefore we have

 ∑
j∈N\{i}

H̄ij

  ∑
j∈N\{i}

H̄ij

† = MιT ,

 ∑
i∈N\{j}

H̄ij

  ∑
i∈N\{j}

H̄ij

† = MιT ,

which can equivalently be written as

D†D = DD† = I2N ⊗MιT = I2NT − I2N ⊗ PιT , (28)
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where PιT := T−1ιT ι
′
T . Now, using (26) and H̄ = D + G we have

H̄† (D + G) = I2NT − Pnull.

Multiplying this with D† from the right, using (28) and (27), and bringing H̄†GD† to the
RHS gives

H̄† = D† − PnullD
† − H̄†GD†. (29)

By transposing this last equation we obtain

H̄† = D† −D†Pnull −D†GH̄†, (30)

and now plugging (29) into the RHS of (30) gives

H̄† = D† −D†Pnull −D†GD† + D†GPnullD
† −D†GH̄†GD†

= D† −D†GD† −D†Pnull − PnullD
† + D†GH̄†GD†,

where in the second step we used thatD†GPnull = −Pnull, which follows from 0 = H̄Pnull =
DPnull+GPnull by left-multiplication withD† and using thatD†DPnull = 0. This expansion
argument for H̄† so far has followed the proof of Theorem 2 in Jochmans and Weidner
(2019). We furthermore have here that D† (I2N ⊗ PιT ) = 0, because H̄ijιT = 0, implying
that D†Pnull = D†Pv. The expansion in the last display therefore becomes

H̄† −D† = −D†GD† −D†Pv − PvD† + D†GH̄†GD†, (31)

with 2NT × T matrix v defined in (23). This expansion is the first key step in the proof
of the lemma.

# Bound on the spectral norm of H̄†: The term D†GH̄†GD† in the expansion (31) still
contains H̄† itself. In order to bound contributions from this term we therefore need a
preliminary bound on the spectral norm of H̄†.

The objective function `ij(β, πij) := `ij(β, αit, γjt) in (11) is strictly convex in πij,
apart from the flat direction given by the invariance πij 7→ πij + cij ιT , cit ∈ R. This
strict convexity together with our Assumption A(ii) that all regressors and parame-
ters are uniformly bounded over i, j, N, T implies that for the T × T expected Hessian
H̄ij := E

[
−∂2`ij/∂πij∂π

′
ij(β0, α0, γ0)

]
there exists a constant b > 0 that is independent of

i, j, N, T such that

min
{v∈R : ι′T v=0}

v′H̄ijv ≥ b > 0.
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The last display states that H̄ij is positive definite in all directions orthogonal to ιT .
Again, the lower bound b > 0 holds uniformly due to Assumption A(ii). The last display
result can equivalently be written as

H̄ij ≥ bMιT , (32)

where ≥ means that the difference between the matrices is positive definite.
Next, let ei = (0, . . . , 0, 1, 0, . . . , 0)′ be the i’th standard unit vector of dimension N .

For all i, j ∈ N := {1, . . . , N} we then have

∂φπ
′
ij =

(
ei
ej

)
⊗ IT ,

which are 2NT × T matrices. Because L(β, φ) = ∑N
i=1

∑
j∈N\{i} `ij(β, πij) we thus find

that

H̄ = E [−∂φφ′L] =
N∑
i=1

∑
j∈N\{i}

(
∂φπ

′
ij

)
E
[
−∂πijπ′

ij
`ij
] (
∂φπ

′
ij

)′

=
N∑
i=1

∑
j∈N\{i}

[(
ei
ej

)
⊗ IT

]
H̄ij

[(
ei
ej

)
⊗ IT

]′

≥ b
N∑
i=1

∑
j∈N\{i}

[(
ei
ej

)
⊗ IT

]
MιT

[(
ei
ej

)
⊗ IT

]′

= b

 N∑
i=1

∑
j∈N\{i}

(
ei
ej

)(
ei
ej

)′⊗MιT

= b

 (N − 1)IN ιN ι
′
N − IN

ιN ι
′
N − IN (N − 1)IN


︸ ︷︷ ︸

=:QN

⊗MιT

where we also used (32). It is easy to show that for N > 2 the 2N × 2N matrix QN has
an eigenvalue zero with multiplicity one, an eigenvalue N − 2 with multiplicity N − 1,
an eigenvalue N with multiplicity N − 1, and an eigenvalue 2(N − 1) with multiplicity
one. Thus, the smallest non-zero eigenvalue of QN is (N − 2). Also, the zero-eigenvector
of QN is given by v0 := (ι′N ,−ι′N)′, and therefore we have QN ≥ (N − 2)Mv0 , where
Mv0 = I2N − (2N)−1v0v

′
0 is the projector orthogonal to v0. We therefore have

H̄ ≥ b (N − 2)M(ι′N ,−ι
′
N )′ ⊗MιT

= b (N − 2) (I2NT − Pnull) ,
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where Pnull is the projector onto the null-space of H̄, as already defined above. From this
it follows that

H̄† ≤ 1
b (N − 2) (I2NT − Pnull) ,

and therefore for the spectral norm∥∥∥H̄†∥∥∥ ≤ 1
b (N − 2) = O(1/N). (33)

# Final bound on
∥∥∥H̄† −D†

∥∥∥
max

: Using (32) we find

max
i∈N

 1
N − 1

∑
j∈N\{i}

H̄ij

† = OP (1), max
j∈N

 1
N − 1

∑
i∈N\{j}

H̄ij

† = OP (1).

This together with our boundedness Assumption A(ii) implies that∥∥∥D†∥∥∥
max

= OP (1/N), ‖G‖max = OP (1). (34)

The definition of the 2NT × T matrix v in (23) implies that

‖Pv‖max =
∥∥∥P(ι′N ,−ι

′
N )′ ⊗MιT

∥∥∥
max
≤
∥∥∥P(ι′N ,−ι

′
N )′

∥∥∥
max

= (2N)−1 ‖(ι′N ,−ι′N)′(ι′N ,−ι′N)‖max

= (2N)−1 = O(1/N), (35)

where we also used that ‖MιT ‖max ≤ 1. In the following display, let ek = (0, . . . , 0, 1, 0, . . . , 0)′

be the k’th standard unit vector of dimension 2NT . We find that∥∥∥GH̄†G∥∥∥
max

= max
k,`∈{1,...,2NT}

∣∣∣e′k GH̄†Ge`∣∣∣
≤
(

max
k∈{1,...,2NT}

‖Gek‖
)∥∥∥H̄†∥∥∥( max

`∈{1,...,2NT}
‖Ge`‖

)

=
(

max
k∈{1,...,2NT}

‖Gek‖
)2 ∥∥∥H̄†∥∥∥

≤
(√

2NT ‖G‖max

)2 ∥∥∥H̄†∥∥∥
= OP (1), (36)

where the first line is just the definition of ‖·‖max, the second step uses definition of the
spectral norm

∥∥∥H̄†∥∥∥, the third step is an obvious rewriting, the fourth step uses that the
norm of 2NT -vector Gek can at most be

√
2NT times the maximal absolute element of
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the vector, and the final step uses that T is fixed in our asymptotic and ‖G‖max = OP (1)
and also (33).

Next, for general 2NT×2NT matrices A and B we have the bound (notice that ‖·‖max

is not a matrix norm)

‖AB‖max ≤ 2NT ‖A‖max ‖B‖max,

but because D is block-diagonal (with non-zero T × T blocks on the diagonal) we have
for any 2NT × 2NT matrix A the much improved bound

‖DA‖max ≤ T ‖D‖max ‖A‖max .

Applying those inequalities to the expansion of H̄† − D† obtained from (31), and also
using (34) and (35) and (36), we find that∥∥∥H̄† −D†

∥∥∥
max
≤ T 2

∥∥∥D†∥∥∥2

max
‖G‖max + 2T

∥∥∥D†∥∥∥
max
‖Pv‖max + T 2

∥∥∥D†∥∥∥2

max

∥∥∥GH̄†G∥∥∥
max

= OP (1/N2),

as N → ∞ (remember that T is fixed in our asymptotic.) This is what we wanted to
show. �

Proof of Proposition 3

The pseudo-likelihood function of the Poisson model is strictly concave in the single
index. Therefore, Assumption A together with Lemma 1 guarantee that the conditions
of Theorem B.1 in Fernández-Val and Weidner (2016) are satisfied for the rescaled and
penalized objective function4

1√
N(N − 1)

L(β, φ)− 1
2φ
′ Pnull φ,

with Pnull defined in (25). Here, the penalty term φ′ Pnull φ guarantees strict concavity
in (β, φ). However, in the following all derivatives of L(β, φ) are evaluated at the true
parameters, and since we impose the normalization Pnull φ0 = 0 the only derivative of

4Since we have a concave objective function, we can apply Theorem B.3 in FW to obtain preliminary
convergence results for both β̂ and φ̂. That theorem guarantees that that the consistency condition
on φ̂(β) in Assumption (iii) of Theorem B.1 in FW is satisfied under our Assumption A, and it also
guarantees

∥∥∥β̂ − β0
∥∥∥ = OP (N−1/2), which is important to apply Corollary B.2 in FW to obtain the

expansion result in our equation (37).
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L(β, φ) where the penalty term gives a non-zero contribution is the incidental parameter
Hessian matrix H̄ = E [−∂φφ′L(β0, φ0)] for which the penalty term provides exactly the
correct regularization. However, instead of that regularization, we can equivalently use
the pseudoinverse; namely we have(

H̄ + c Pnull
)−1

= H̄† + 1
c
Pnull,

for any c > 0. In all expressions below where H̄† appears we could equivalently write
H̄† + 1

N
Pnull, but the additional contributions from 1

N
Pnull will always vanish because the

gradient of L(β, φ) with respect to φ is orthogonal to Pnull.
By applying Theorem B.1 and its Corollary B.2 in FW we thus obtain√

N(N − 1)(β̂ − β0) = W−1
N UN + oP (1), (37)

where

WN = − 1
N(N − 1)

(
∂ββ′L̄+ [∂βφ′L̄] H̄† [∂φβ′L̄]

)
= − 1

N(N − 1)

N∑
i=1

∑
j∈N\{i}

∂ββ′ ¯̀∗ij

was already defined in Proposition 3, and we have UN := U
(0)
N + U

(1)
N , with

U
(0)
N = 1√

N(N − 1)

[
∂βL+ [∂βφ′L̄] H̄†∂φL

]
= 1√

N(N − 1)
∂βL∗

= 1√
N(N − 1)

N∑
i=1

∑
j∈N\{i}

∂β`
∗
ij,

√
N(N − 1)U (1)

N = [∂βφ′L − ∂βφ′L̄]H̄†∂φL − [∂βφ′L̄] H̄†
[
H− H̄

]
H̄† ∂φL

+ 1
2

dimφ∑
g=1

(
∂βφ′φgL̄+ [∂βφ′L̄] H̄†[∂φφ′φgL̄]

)
[H̄†∂φL]gH̄†∂φL

= [∂βφ′L∗ − ∂βφ′L̄∗]H̄†∂φL+ 1
2

dimφ∑
g=1

∂βφ′φgL̄∗[H̄†∂φL]gH̄†∂φL.

Here, `∗ij was defined in (21), all “bars” denote expectations conditional onX and φ, and all
the partial derivatives are evaluated at the true parameters. We also defined L∗(β, φ) :=∑N
i=1

∑
j∈N\{i} `

∗
ij(β, αit, γjt). Remember that we use a different scaling of the (profile) like-

lihood function than FW; namely in (10) we define L(β, φ) = ∑N
i=1

∑
j∈N\{i} `ij(β, αit, γjt),

while in FW this function would have an additional factor 1/
√
N(N − 1). This explains
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the additional
√
N(N − 1) factors in WN , U (0)

N and U (1)
N as compared to Theorem B.1 in

FW.
The score term ∂β`

∗
ij = x̃′ijSij has zero mean and finite variance and is independent

across i and j, conditional on X and φ. By the central limit theorem we thus find

U
(0)
N ⇒ N (0,ΩN),

where

ΩN = 1
N(N − 1)

N∑
i=1

∑
j∈N\{i}

Var
(
∂β`
∗
ij

∣∣∣xij)

= 1
N(N − 1)

N∑
i=1

∑
j∈N\{i}

x̃′ij
[
Var

(
Sij

∣∣∣xij)] x̃ij.
Thus, the term U

(0)
N only contributes variance to the asymptotic distribution of β̂, but

no asymptotic bias. By contrast, the term U
(1)
N only contributes bias to the asymptotic

distribution of β̂, but no variance. Namely, one finds that

U
(1)
N →p BN +DN , (38)

with BN and DN as given in the proposition. The proof of (38) is exactly analogous to
the corresponding discussion of those terms in the proof of Theorem 4.1 in FW, which we
restated above as Theorem 1 (remember that for T = 2 our result here is indeed just a
special case of Theorem 4.1 in FW.) Therefore, instead of repeating those derivations here,
we provide in the following a slightly less rigorous, but much easier to follow, derivation
of those bias terms.

Derivation of the asymptotic bias in Proposition 3

Remember that the main difference between Theorem 1 and our case here is that for us the
incidental parameters αi and γj are T -vectors, while in Theorem 1 the index πij = αi +γj

is just a scalar. An easy way to generalize the asymptotic bias formulas in Theorem 1 and
display (20) to vector-valued incidental parameters is to use a suitable parameterization
for the incidental parameters αi and γj. The formulas for B1 and D1 can most easily be
generalized by parameterizing the incidental parameters as follows

αi = Ai α̃i, γj = Cj γ̃j, (39)
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where α̃i and γ̃j are T − 1 vectors, and Ai and Cj are T × (T − 1) matrices that satisfy

AiA
′
i =

∑
j

H̄ij

† , CjC
′
j =

(∑
i

H̄ij

)†
. (40)

Let L̃(β, α̃, γ̃) = L(β, (Ai α̃i), (Cj γ̃j)). This reparameterization guarantees that

∂2L̃(β0, α̃0, γ̃0)
(∂α̃i)(∂α̃i)′

= A′i

∑
j

H̄ij

Ai = IT−1,

∂2L̃(β0, α̃0, γ̃0)
(∂γ̃j)(∂γ̃j)′

= C ′j

(∑
i

H̄ij

)
Cj = IT−1. (41)

That is, the Hessian matrix with respect to the incidental parameters α̃i and γ̃j is nor-
malized to be an identity matrix under that normalization. It can be shown that this
implies that the incidental parameter biases B1 and D1 “decouple” across the T − 1 com-
ponents of α̃i and γ̃j; that is, the total contribution to the incidental parameter bias of β̂
just becomes a sum over T − 1 contributions of the form B1 and D1 in (20). Thus, for
k ∈ {1, . . . , K} we have

B1,k =
T−1∑
q=1

− 1
N

∑
i,j

E
(
∂α̃i,q`ijDβkα̃i,q`ij

)
∑
j′ E

(
∂α̃2

i,q
`ij′

)
 =

T−1∑
q=1

− 1
N

∑
i,j

E
(
∂α̃i,q`ijDβkα̃i,q`ij

)
= − 1

N

∑
i,j

E
[
(∂α̃i`ij)

′ (Dβkα̃i`ij)
]

= − 1
N

∑
i,j

E
[
(∂αi`ij)

′AiA
′
i (Dβkαi`ij)

]

= − 1
N

∑
i,j

E

S ′ij
∑

j′
H̄ij′

†Hij x̃ij,k

 ,
where in the second step we used the fact that ∑j′ E

(
∂α̃2

i,q
`ij′

)
= 1 according to (41), in

the third step we rewrote the sum over q ∈ {1, . . . , T − 1} in terms of the vector product
of the T − 1 vectors ∂α̃i`ij and Dβkα̃i`ij, in the fourth step we used that αi = Ai α̃i, and
in the final step we used (40) and the definitions of Sij, Hij and x̃ij,k. All expectations
here are conditional on X (in the main text we always make that conditioning explicit),
and H̄ij′ and x̃ij,k are non-random conditional on X; that is, we can also write this last
expression as

B1,k = − 1
N

∑
i

Tr


∑

j′
H̄ij′

†∑
j

E
(
Hij x̃ij,k S

′
ij

) .
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Analogously we find

D1,k = − 1
N

∑
i,j

E

S ′ij
(∑

i′
H̄i′j

)†
Hij x̃ij,k

 .
Next, to generalize the incidental parameter biases B2 and D2 in (20) to vector-values αi
and γj we again make a transformation (39), but this time we choose

AiA
′
i =

∑
j

H̄ij

† ∑
j

E
(
Sij S

′
ij

∣∣∣xij)
∑

j

H̄ij

† .
CjC

′
j =

(∑
i

H̄ij

)† [∑
i

E
(
Sij S

′
ij

∣∣∣xij)
](∑

i

H̄ij

)†
. (42)

Notice that for a correctly specified likelihood we have the Bartlett identities H̄ij =
E
(
Sij S

′
ij

∣∣∣xij), implying that (40) and (42) are identical for correctly specified likelihoods.
In general, however, the transformation now is different. Instead of normalizing the
Hessian matrices to be identities, as in (41), the new transformation defined by (42)
guarantees that

AsyVar
(̂̃αi) =

[
∂2L̃(β0, α̃0, γ̃0)

(∂α̃i)(∂α̃i)′

]†
Var

∂L̃(β0, α̃0, γ̃0)
∂α̃i

∣∣∣∣∣∣X
 [∂2L̃(β0, α̃0, γ̃0)

(∂α̃i)(∂α̃i)′

]†
= IT−1,

AsyVar
(̂̃γj) =

[
∂2L̃(β0, α̃0, γ̃0)

(∂γ̃j)(∂γ̃j)′

]†
Var

∂L̃(β0, α̃0, γ̃0)
∂γ̃j

∣∣∣∣∣∣X
 [∂2L̃(β0, α̃0, γ̃0)

(∂γ̃j)(∂γ̃j)′

]†
= IT−1.

(43)
Again, it can be shown that with this normalization the incidental parameter bias con-
tributions B2 and D2 “decouple”; that is, each component of ̂̃αi contributes an incidental
parameter bias of the form B2 in (20) to β̂, and each component of ̂̃γi contributes an
incidental parameter bias of the form D2 in (20) to β̂. The total contribution thus reads,
for k ∈ {1, . . . , K},

B2,k =
T−1∑
q=1

1
2

1
N

∑
i

[∑
j E(∂α̃i,q`ij)2

]∑
j E(Dβkα̃2

i,q
`ij)[∑

j E
(
∂α̃2

i,q
`ij
)]2


=

T−1∑
q=1

1
2

1
N

∑
i,j

E(Dβkα̃2
i,q
`ij) = 1

2
1
N

∑
i,j

Tr
[
E(Dβk α̃iα̃′

i
`ij)

]
= 1

2
1
N

∑
i,j

Tr
[
A′i E(Dβk αiα′

i
`ij)Ai

]

= 1
2N

∑
i

Tr


∑

j

Ḡij x̃ij,k

∑
j

H̄ij

† ∑
j

E
(
Sij S

′
ij

∣∣∣xij,k)
∑

j

H̄ij

†
 ,
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where in the second step we used that
[∑

j E(∂α̃i,q`ij)2
]
/
[∑

j E
(
∂α̃2

i,q
`ij
)]2

= 1 according
to (43), in the third step we rewrote the sum over q ∈ {1, . . . , T − 1} as a trace over the
(T −1)× (T −1) matrix of third-order partial derivatives E(Dβk α̃iα̃′

i
`ij), in the fourth step

we used that αi = Ai α̃i, and in the final step we used the cyclicity of the trace and (42)
and the definitions of Ḡij, x̃ij,k, and the tensor-vector product Ḡijx̃ij,k (which, recall, is a
T × T matrix).

Analogously we find

D2,k =
T−1∑
q=1

1
2

1
N

∑
j

[∑
i E(∂γ̃j,q`ij)2

]∑
i E(Dβkγ̃2

j,q
`ij)[∑

i E
(
∂γ̃2

j,q
`ij
)]2


= 1

2N
∑
j

Tr
(∑

i

Ḡij x̃ij,k

)(∑
i

H̄ij

)† [∑
i

E
(
Sij S

′
ij

∣∣∣xij,k)
](∑

i

H̄ij

)† .
We have thus translated all the formulas in Theorem 1 and in display (20) to the case
of vector-valued αi and γj to find exactly the expression for the asymptotic biases Bk

N =
B1,k +B2,k and Dk

N = D1,k +D2,k in Proposition 3.

Rewriting the bias expressions as in Appendix A.2.2

In the following, we unpack the formulas provided in Appendix A.2.2 in order to provide
additional detail on why the leading bias term is of order 1/(NT ) as both N and T →∞
simultaneously. Remember that E(yijt|xijt, αit, γij) = λijt := exp(x′ijtβ + αit + γij) and
ϑijt := λijt∑

τ
λijτ

, and denote the corresponding T -vectors by yij, λij and ϑij. It is convenient
to define the T × T matrices

Λij := diag (λij) ,

and

Mij := IT −
λij ι

′
T

ι′Tλij
= IT − ϑijι′T ,

which is the unique idempotent T×T matrix (i.e.MijMij = Mij) that satisfies rank(Mij) =
T − 1, Mijλij = 0, and ι′TMij = 0. Notice also that λij = ΛijιT , and therefore
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MijΛij = ΛijM
′
ij. We then have

Sij = M ′
ijyij,

H̄ij = Mij ΛijM
′
ij = Mij Λij = ΛijM

′
ij = Λij −

λijλ
′
ij

ι′Tλij
,

Hij = H̄ij

(
ι′Tyij
ι′Tλij

)
,

and

Ḡij,tsr = −
T∑
u=1

λij,uMij,tuMij,suMij,ru,

where t, s, r ∈ {1, . . . , T}.
Next, define x̃∗ij,k := M ′

ijx̃ij,k. Noting that λ′ijx̃∗ij,k = 0, we find

WN,k` = 1
N (N − 1)

∑
i,j

x̃∗′ij,k Λij x̃
∗
ij,`

= 1
N (N − 1)

∑
i,j,t

λijt x̃
∗
ijt,k x̃

∗
ijt,`.

This shows that WN has an additional sum over t, so WN increases linearly in T , and
W−1
N = O(T−1), for T →∞.
Now, also define Dij,k := diag

[(
λijt x̃

∗
ijt,k

)
t=1,...,T

]
, which is the diagonal T ×T matrix

with diagonal entries λijt x̃∗ijt,k. The first-order conditions of the optimization problem
that defines x̃ij,k read

∑
i

H̄ij x̃ij,k = 0,
∑
j

H̄ij x̃ij,k = 0,

or equivalently
∑
i

Λij x̃
∗
ij,k = 0,

∑
j

Λij x̃
∗
ij,k = 0,

which can also be written as
∑
i

Dij,k = 0,
∑
j

Dij,k = 0. (44)
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These FOC’s are only important to simplify the term B2,k in what follows. We have

B1,k = − 1
N

∑
i,j

E
[
(ι′Tyij)S ′ij

]
ι′Tλij

∑
j′
H̄ij′

† Λij x̃
∗
ij,k

= − 1
N(N − 1)

∑
i,j

ι′T
ι′Tλij

Var(yij)M ′
ij

 1
N

∑
j′
H̄ij′

† ΛijM
′
ij x̃ij,k,

B2,k = − 1
2N

∑
i

Tr


∑

j

Mij Dij,kM
′
ij

∑
j

H̄ij

† ∑
j

MijVar(yij)M ′
ij

∑
j

H̄ij

†


= 1
N(N − 1)

∑
i,j

λ
′
ij Qi Λij x̃

∗
ij,k

ι′Tλij
−

(
λ′ij x̃

∗
ij,k

) (
λ′ijQiλij

)
(ι′Tλij)

2


= 1
N(N − 1)

∑
i,j

λ′ij Qi ΛijM
′
ij x̃ij,k

ι′Tλij
,

where, in the second-to-last step, we used the definition of Mij, (44), that ι′TDij,kιT =
λ′ij x̃

∗
ij,k, and that Dij,kιT = Λij x̃

∗
ij,k; and in the last step, we used that Λij x̃

∗
ij,k =

ΛijM
′
ijx̃ij,k and λ′ij x̃∗ij,k = 0. We also used the definition of Qi given in Appendix A.2.2.

We then have for Bk
N = B1,k +B2,k that

Bk
N = − 1

N(N − 1)
∑
i,j

1
T
ι′T Rij x̃ij,k

1
T
ι′Tλij

+ 1
N(N − 1)

∑
i,j

1
T
λ′ij Qi ΛijM

′
ij x̃ij,k

1
T
ι′Tλij

,

where we have now also used the definition of Rij from Appendix A.2.2 in order to
simplify B1,k. Under appropriate regularity conditions, the T × T matrices Qi and Rij

each maintain diagonal elements of order one and off-diagonal elements of order 1/T 2

through their dependence on Var(yij). Therefore, all the numerators and denominators
in the last expression for Bk

N remain of order one as T → ∞, such that Bk
N = O(1) as

T → ∞, with an analogous result also following for Dk
N . Recalling that WN increases

linearly with T , we thus conclude that the bias term

W−1
N (BN +DN)
N − 1 ,

is of order 1/(NT ) as both N and T grow large.

Comment on Proposition 1

We note that the consistency result from Proposition 1 also follows from the above proof
of Proposition 3:
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Remark 3. If the asymptotic bias in β̂ is characterized by Proposition 3, then β̂ is
consistently estimated as N →∞.

As we have noted in the text, for this consistency result to hold, we need for the score
of the profile log-likelihood `ij(β, αit, γjt) from (11) to be unbiased when evaluated at the
true parameters (β0, α0, γ0). In particular, we need for there to be no incidental parameter
bias term of order 1/T associated with the pair fixed effect ηij. As the following proof
and subsequent discussion clarify, the FE-PPML estimator is quite special in this regard.

A.4 Proof of Proposition 2

To prove Proposition 2, it will first be useful to prove the following lemma:

Lemma 2. Assume a “one way” panel data model with λit = exp(x′itβ+αi) and consider
the class of FE-PML panel estimators with FOC’s given by

β̂:
N∑
i=1

T∑
t=1

xit
(
yit − λ̂it

)
g(λ̂it) = 0, α̂i:

T∑
t=1

(
yit − λ̂it

)
g(λ̂it) = 0,

where i = 1, . . . , N , t = 1, ..., T, and g(λ̂it) is an arbitrary positive function of λ̂it. If T is
fixed, β̂ is only consistent under general assumptions about Var(y|x, α) if g(λ) is constant
over the range of λ’s that are realized in the data-generating process.

Put simply, if Lemma 2 holds, then no other FE-PML estimator of the form described
in Proposition 2 aside from FE-PPML can be consistent under general assumptions about
the conditional variance Var(y|x, α, γ, η). We have already shown that the three-way FE-
PPML estimator is generally consistent regardless of the conditional variance. Thus, if
we can prove Lemma 2, Proposition 2 follows directly.

Proof of Lemma 2. Our strategy here will be to adopt a specific parameterization for
the conditional variance Var(y|x, α) and then examine the conditions under which β̂ is
sensitive to small changes in the conditional variance. If β̂ depends on Var(y|x, α) even
for large N , then it is not possible for β̂ to be consistent under general assumptions about
Var(y|x, α).

To proceed, let the true data generating process be given by

yit = λitωit,
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where λit is the true conditional mean and

ωit := exp
[
−1

2 ln (1 + λρit) +
√

ln (1 + λρit)zit
]

(45)

with zit a randomly-generated variable distributedN (0, 1). ωit is therefore a heteroskedas-
tic multiplicative disturbance that follows a log-normal distribution with E[ωit] = 1 and
Var(ωit) = λρit. The conditional mean of yit is in turn given by E[yit|x, α] = λit and the
conditional variance is given by Var(yit|x, α) = Var(yit|λit) = λ2

itVar(ωit) = λρ+2
it . Our

focus is the exponent ρ, which governs the nature of the heteroskedasticity and can be
any real number. With this in mind, it is useful to document the following results,

E
[
∂ωit
∂ρ

]
= ∂E [ωit]

∂ρ
= 0 (46)

E
[
∂ (ω2

it)
∂ρ

]
= E

[
2ωit

∂ωit
∂ρ

]
= ∂E (ω2

it)
∂ρ

= ∂V [ωit]
∂ρ

= λρit ln λit 6= 0. (47)

Put another way, the expected value of the change in ωit with respect to ρ must always
be zero because E[ωit] = 1 regardless of ρ. Similarly, the expected change in the second
moment of ωit must be λρit ln λit because this gives the change in the variance of ωit.5

To facilitate the rest of the proof, we invoke the following conceit: the random distur-
bance term zit, once drawn from N (0, 1), is known and fixed, such that each ωit may be
treated as a known transformation of the underlying value for zit given by (45). Among
other things, this means we can always treat the partial derivatives ∂ωit

∂ρ
and ∂yit

∂ρ
= λit

∂ωit
∂ρ

as well-defined; similarly, we can treat the estimated parameters β̂ and α̂i as deterministic
functions of the variance parameter ρ with well-defined total derivatives dβ̂

dρ
and dα̂i

dρ
. That

is, for a given draw of zit’s, we can perturb how the corresponding ωit’s are generated and
consider comparative statics for how estimates are affected. If β̂ is consistent regardless
of the variance assumption used to generate ωit, then small changes in ρ should have no
effect on β̂ asymptotically. Thus, our goal in the following is to determine if there are
any estimators in this class other than FE-PPML under which limN→∞

dβ̂
dρ

= 0 in this
experiment.

The next step is to totally differentiate the FOC’s for β̂ and α̂i with respect to a change
in ρ. Let L denote the pseudo-likelihood function to be maximized.6 For notational

5Note here that ∂(ω2
it)

∂ρ = 2ωit ∂ωit

∂ρ .
6The implied pseudo-likelihood function is given here by L :=

∑N
i=1
∑T
t=1yit

∫ g(λit)
λit

dλit −∑N
i=1
∑T
t=1
∫
g(λit)dλit.
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convenience, we can express the scores for β̂ and α̂i as Lβ and Lαi , such that their FOCs
can respectively be written as Lβ = 0 and Lαi = 0. Differentiating the FOC for β̂, we
obtain

dβ̂

dρ
= −L−1

ββLβρ − L−1
ββ

∑
i

Lβαi
dα̂i
dρ

, (48)

where Lββ is the matrix obtained from partially differentiating the score for β̂ with respect
to β̂, Lβρ (a vector) is the partial derivative of Lβ with respect to ρ, and Lβαi (also a
vector) is its partial derivative with respect to α̂i. Applying a similar set of operations to
the FOC for α̂i then gives

dα̂i
dρ

= −L−1
αiαi
Lαiρ − L−1

αiαi
L′βαi

dβ̂

dρ
, (49)

where Lαiαi and Lαiρ are scalars that respectively contain the partial derivatives of Lαi
with respect to α̂i and ρ. Plugging (49) into (48), we have

dβ̂

dρ
= −L−1

ββLβρ + L−1
ββ

N∑
i=1
L−1
αiαi
LβαiLαiρ + L−1

ββ

N∑
i=1
L−1
αiαi
LβαiL′βαi

dβ̂

dρ

= −
(

I− L−1
ββ

N∑
i=1
L−1
αiαi
LβαiL′βαi

)−1

L−1
ββLβρ (50)

+
(

I− L−1
ββ

N∑
i=1
L−1
αiαi
LβαiL′βαi

)−1

L−1
ββ

N∑
i=1
L−1
αiαi
LβαiLαiρ, (51)

where I is an identity matrix whose dimensions equal the size of β.
Let P henceforth denote the combined matrix object I − L−1

ββ

∑
i L−1

αiαi
LβαiL′βαi . It is

straightforward to show that that first term in (51), −P−1L−1
ββLβρ, converges in proba-

bility to a zero vector when N → ∞. To see this, note first that P and Lββ must be
non-singular and finite for β̂ to be at a maximum point of L and for dβ̂

dρ
to exist. Fur-

thermore, limN→∞NTL−1
ββ = −E[xitλ̂itg(λ̂it)x′it]−1 must also be non-singular and finite.

Slutsky’s theorem then implies limN→∞−P−1L−1
ββLβρ →p 0 if limN→∞N

−1T−1Lβρ →p 0.
Examining the vector Lβρ more closely, we have

Lβρ =
N∑
i=1

T∑
t=1

xit
∂yit
∂ρ

g(λ̂it) =
N∑
i=1

T∑
t=1

xitλit
∂ωit
∂ρ

g(λ̂it).

limN→∞N
−1T−1Lβρ →p 0 then follows via standard arguments because E

[
∂ωit
∂ρ

]
= 0 (by

(46)). We may therefore focus our attention on the second term on the RHS in (51),
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P−1L−1
ββ

∑
i L−1

αiαi
LβαiLαiρ. Noting that L−1

αiαi
must be < 0, in this case we consider the

conditions under which limN→∞N
−1T−1∑

i L−1
αiαi
LβαiLαiρ similarly converges in proba-

bility to zero. The summation in this latter term may be expressed as
N∑
i=1
L−1
αiαi
LβαiLαiρ =

N∑
i=1
L−1
αiαi

[
T∑
t=1

xit
(
yit − λ̂it

)
g′(λ̂it)λ̂it −

T∑
t=1

xitλ̂itg(λ̂it)
]

T∑
t=1

∂yit
∂ρ
g(λ̂it).

Re-arranging this expression, we have that
N∑
i=1
L−1
αiαi
LβαiLαiρ =

N∑
i=1

T∑
t=1

T∑
s=1
L−1
αiαi

xityitg
′(λ̂it)λ̂itg(λ̂is)

∂yis
∂ρ

−
N∑
i=1

T∑
t=1

T∑
s=1
L−1
αiαi

xit
(
λ̂itg

′(λ̂it) + g(λ̂it)
)
λ̂itg(λ̂is)

∂yis
∂ρ

. (52)

Focusing first on the second of the two summation terms in (52), we again apply yit =
λitωit, ∂yis∂ρ

= λit
∂ωis
∂ρ
, and E

[
∂ωit
∂ρ

]
= 0. We have that

lim
N→∞

1
NT

N∑
i=1

T∑
t=1

T∑
s=1
L−1
αiαi

xit
(
λ̂itg

′(λ̂it) + g(λ̂it)
)
λ̂itg(λ̂is)λis

∂ωis
∂ρ
→p 0.

This follows for the same reason limN→∞N
−1T−1Lβρ →p 0 above. The first summation

term in (52) obviously→p 0 as well if the estimator is FE-PPML, in which case g′(λ̂it) = 0.
To complete the proof, we just need to show that this term does not reduce to 0 if
g′(λ̂it) 6= 0. A final step gives us

lim
N→∞

1
NT

N∑
i=1

T∑
t=1

T∑
s=1
L−1
αiαi

xityitg
′(λ̂it)λ̂itg(λ̂is)

∂yis
∂ρ

= lim
N→∞

1
NT

N∑
i=1

T∑
t=1
L−1
αiαi

xitg
′(λ̂it)λ̂itg(λ̂it)yit

∂yit
∂ρ

= lim
N→∞

1
NT

N∑
i=1

T∑
t=1
L−1
αiαi

xitg
′(λ̂it)λ̂itg(λ̂it)λ2

itωit
∂ωit
∂ρ

6= 0.

To elaborate, the terms where s 6= t vanish as N →∞ because disturbances are assumed
to be independently distributed (E[ωit ∂ωis∂ρ

] = 0 if s 6= t.)7 The remaining details follow
from (47).8 We have now shown limN→∞

dβ̂
dρ

= 0 if and only if g′(λ̂it) = 0. In other
words, the estimator must be FE-PPML, which assumes g(λ̂it) is a constant. For other
FE-PML estimators, even if β̂ is consistent for a particular ρ, it cannot be consistent for

7Note that under FE-PPML, where g′(λ̂it) = 0, the estimator is consistent even if disturbances are
correlated. This is yet another reason why FE-PPML is an especially robust estimator.

8Notice that if T → ∞ also, we have that limT→∞ TL−1
αiαi

= −E
[
λ̂itg(λ̂it)

]−1
must be finite. We
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all ρ because β̂ does not converge to the same value for N →∞ when we vary ρ. As we
discuss below, this is what happens for FE-Gamma PML (where g(λ̂it) = λ̂−1

it ) and some
other similar estimators. �

To be clear, the robustness of the FE-PPML estimator to misspecification is a known
result established by Wooldridge (1999). However, to our knowledge, it has not previously
been shown that FE-PPML is the only estimator in the class we consider that has this
property.9 At the same time, it is worth clarifying that FE-PPML is not the only estimator
that is capable of producing consistent estimates of three-way gravity models. Rather, it
is the only estimator in the class we consider that only requires correct specification of
the conditional mean and for the covariates to be conditionally exogenous in order to be
consistent. The following discussion describes some known cases in which other estimators
will be consistent.

A.5 Results for Other Three-way Estimators

Depending on the distribution of the data, there may be some other consistent estimator
available aside from FE-PPML. In particular, if g(λ̂ijt) is of the form g(λ̂ijt) = λ̂qijt,
with q an arbitrary real number, the FOC for η̂ij has a solution of the form η̂ij =
[∑T

t=1 µ̂
q+1
ijt ]−1∑T

t=1 yijtµ̂
q
ijt. It is therefore possible to “profile out” η̂ij from the FOC for

β̂, just as in the FE-PPML case. As such, it is possible for the estimator to be consis-
tently estimated, but only if the conditional variance is correctly specified (more precisely,
we must have Var(y|x, α, γ, η) ∝ λ̂1−q

it , the equivalent of ρ = −1 − q.) In this case, the
estimator is not only consistent, but should be more efficient as well.

An interesting example to consider in the gravity context is the Gamma PML (GPML)
estimator, which imposes g(λ̂ijt) = λ̂−1

ijt . Generally speaking, GPML is considered the

would therefore have

lim
N,T→∞

1
NT

N∑
i=1

T∑
t=1

[
TL−1

αiαi

]
xitg
′(λ̂it)λ̂itg(λ̂it)λ2

it

[
T−1ωit

∂ωit
∂ρ

]
= 0,

ensuring that β̂ does not depend on ρ for the large N, large T case. This follows because
limT→∞ T−1V [ωit] = 0 =⇒ limT→∞ T−1E

[
ωit

∂ωit

∂ρ

]
= 0.

9Alternatively, it is possible to extend the above result to an even more general class of estimators by
considering estimators that depend on g(α̂i) rather than g(λ̂it). The same type of proof may be used to
show that β̂ depends on the variance assumption if g′(α̂i) 6= 0. Furthermore, the estimator can be shown
to be consistent if g′(α̂i) = 0.
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primary alternative to PPML and OLS as an estimator for use with gravity equations
(see Head and Mayer, 2014; Bosquet and Boulhol, 2015.) However, to our knowledge, no
references to date on gravity estimation make it clear that, unlike in a two-way setting,
the three-way FE-GPML estimator is only consistent when the conditional variance is
correctly specified.10 Thus, it is possible that researchers could mistakenly infer that the
appeal of FE-GPML as an alternative to FE-PPML in the two-way gravity setting carries
over to the three-way setting.11 This is especially a concern now that recent computational
advances have made estimation of FE-GLM models significantly more feasible.

To illuminate the unique IPP-robustness properties of FE-PPML in the three-way
context, Fig. 3 shows a comparison of simulation results for FE-PPML versus log-OLS
and Gamma PML.12 The displayed kernel densities are computed using 500 replications
of a three-way panel structure with N = 50 and T = 5.13 The i and j dimensions of
the panel both have size N = 50 and the size of the time dimension is T = 5. The fixed
effects are generated according to the same procedures described in the text and we again
model four different scenarios for the distribution of the error term (Gaussian, Poisson,
Log-homoskedastic, and Quadratic).

As we would expect based on Proposition 2 , FE-PPML is relatively unbiased across all
four different assumptions considered for the distribution of the error term. The general
inconsistency of the three-way OLS estimator—which is only unbiased for DGP III where
the error term is log-homoskedastic—is also as expected. However, the reasons behind the
bias in the OLS estimate are well-documented (see Santos Silva and Tenreyro, 2006) and

10As discussed in Greene (2004), the fixed effects Gamma model is generally known not to suffer from
an incidental parameter problem, similar to FE-Poisson. However, the result stated in Greene (2004)
is for the Gamma MLE estimator, which restricts the conditional variance to be equal to the square
of the conditional mean. The FE-Gamma PML estimator is consistent under the slightly more general
assumption that the conditional variance is proportional to the square of the conditional mean.

11For example, Head and Mayer (2014), arguably the leading reference to date on gravity estimation,
suggest comparing PPML estimates with GPML estimates to determine if the RHS of the model is
potentially misspecified. Such a comparison is not straightforward in a three-way setting because the
GPML estimator is likely to be inconsistent. Their other suggestion to compare GPML and OLS estimates
still seems sensible, however. As we show below, both estimators give similar results when the Gamma
variance assumption is satisfied and give different results otherwise.

12We were able to compute three-way FE-Gamma PML estimates using a modified version of the
HDFE-IRLS algorithm used in Correia, Guimarães, and Zylkin (2020). To our knowledge, these are the
first results presented anywhere documenting the inconsistency of the three-way Gamma PML estimator.

13Simulations with larger N are more narrowly distributed, but otherwise are very similar.
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Figure 3: Kernel density plots of three-way gravity model estimates using different FE estimators,
based on 500 replications. The model being estimated is yijt = exp[αit + γjt + ηij + xijtβ]ωijt, where the
distribution of ωijt depends on the DGP and the true value of β is 1 (indicated by the vertical dotted
lines). The size of the i and j dimensions is given by N = 50 and the t dimension has size T = 5. See
text for further details.

do not have to do with the incidental parameters included in the model. The three-way
FE-GPML estimator is also consistent under DGP III because it assumes the error term
has a variance equal to the square of the conditional mean. Both OLS and GPML are
also more efficient than PPML in this case. However, as the other three panels show,
when this variance assumption is relaxed, three-way FE-GPML clearly suffers from an
IPP, exhibiting an average bias equal to roughly half that of OLS in all three cases.

We have also performed some simulations with three-way FE-Gaussian PML, which
imposes g(λ̂ijt) = λ̂ijt. We do not show results for this other estimator because the
HDFE-IRLS algorithm we used to produce the FE-PPML and FE-Gamma PML estimates
frequently did not converge for the FE-Gaussian PML estimator. However, the results
we did obtain were in line with our results for FE-GPML and with our discussion of
Proposition 2 above: the FE-Gaussian PML estimates were consistent when the DGP for
ωijt was itself Gaussian (as in DGP I), but were inconsistent otherwise.
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A.6 Allowing for Conditional Dependence across Pairs

The bias expansion in Proposition 3 allows for errors to be clustered within each pair
(i, j), but assumes conditional independence of yij and yi′j′ for all (i, j) 6= (i′, j′). This
assumption is consistent with the standard practice in the literature of assuming that
errors are clustered within pairs when computing standard errors (see Yotov, Piermartini,
Monteiro, and Larch, 2016.) However, it is important to clarify that the results in Propo-
sition 3 may change when other assumptions are used. For example, if we want to allow
yij and yji (i.e., both directions of trade) to be correlated, then the bias results would
not actually change, but we would need to modify the definition of ΩN to allow for the
additional clustering; namely, we would need

ΩN = 1
N (N − 1)

N−1∑
i=1

N∑
j=i+1

Var
(
x̃′ijSij + x̃′jiSji

∣∣∣x)

= 1
N (N − 1)

N−1∑
i=1

N∑
j=i+1

{
x̃′ij

[
Var

(
Sij

∣∣∣xij)] x̃ij + x̃′ji
[
Var

(
Sji

∣∣∣xji)] x̃ji
+ x̃′ij

[
Cov

(
Sij, Sji

∣∣∣xij)] x̃ji + x̃′ji
[
Cov

(
Sji, Sij

∣∣∣xji)] x̃ij
}
.

(53)

Notice, however, this is just one possibility. Similar adjustments could be made to allow
for clustering by exporter or importer, for example, or even for multi-way clustering à
la Cameron, Gelbach, and Miller (2011). In these cases, the bias would also need to be
modified; specifically, one would have to modify the portions of Dk

N that Bk
N that depend

on the variance of Sij to allow for correlations across i and/or j.

A.7 Showing Bias in the Cluster-robust Sandwich Estimator

For convenience, let xij := (xij, dij) be the matrix of covariates associated with pair
ij, inclusive of the it- and jt-specific dummy variables needed to estimate αi and γj.
Similarly, let b := (β′, φ′)′ be the vector of coefficients to be estimated and let b̂ be the
vector of coefficient estimates. Note that we can write a first-order approximation for Ŝij
as

Ŝij ≈ Sij − H̄ijxij(b̂− b),

which is consistent with the approximation provided in (13). We can then replace b̂ − b
with the standard first-order expansion b̂− b ≈ −L̄−1

bb L0
b , where L = ∑

i,j `ij is the profile
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likelihood. This expansion in turn can be written out as

b̂− b ≈ −L̄−1
bb

[∑
m,n

x′mnSmn
]
.

Now we turn our attention to the outer product ŜijŜ ′ij:

ŜijŜ
′
ij ≈ SijS

′
ij + H̄ijxij(b̂− b)2x′ijH̄ij − 2H̄ij

[
xij(b̂− b)

]
S ′ij

= SijS
′
ij + H̄ijxij(b̂− b)2x′ijH̄ij + 2H̄ijxijL̄−1

bb

[∑
m,n

x′mnSmn
]
S ′ij

Because we assume we are in the special case where FE-PPML is correctly specified, we
have that E[(b̂− b)2] = −κL̄−1

bb , where L̄bb := E[Lbb]. We also have that E[SijS ′ij] = κH̄ij.
Therefore, after applying expectations where appropriate, we have that

E[ŜijŜ ′ij] ≈ SijS
′
ij + κH̄ijxijL̄−1

bb x′ijH̄ij,

which can be seen as extending Kauermann and Carroll (2001)’s results to the case of
a panel data pseudo-likelihood model with within-panel clustering. We are not done,
however, as we have not yet isolated the influence of the incidental parameters. To
complete the derivation of the bias, we must more carefully consider the full inverse
Hessian term L̄−1

bb . Using standard matrix algebra, this inverse can be written as:

L̄−1
bb =


(
L̄ββ − L̄′φβL̄−1

φφ L̄φβ
)−1

−
(
L̄ββ − L̄′φβL̄−1

φφ L̄φβ
)−1
L̄′φβL̄−1

φφ

−L̄−1
φφ L̄φβ

(
L̄ββ − L̄′φβL̄−1

φφ L̄φβ
)−1

L̄−1
φφ+ L̄−1

φφ L̄φβ
(
L̄ββ − L̄′φβL̄−1

φφ L̄φβ
)−1
L̄′φβL̄−1

φφ

 ,
where we have used L̄φφ in place of H̄ in order to add clarity. Making use of some
already-established definitions, we have that the top-left term (L̄ββ − L̄∗′φβL̄−1

φφ L̄φβ)−1 =
−[N(N−1)]−1W−1

N and, similarly, that L̄−1
φφ = −[N(N−1)]−1W

(φ)−1
N . If we again consider

E[ŜijŜ ′ij], we can now write

E[ŜijŜ ′ij − SijS ′ij] ≈ −
κ

N(N − 1)H̄ij(xij dij) × W−1
N −W−1

N L̄′φβL̄−1
φφ

−L̄−1
φφ L̄φβW−1

N W
(φ)−1
N + L̄−1

φφ L̄∗φβW−1
N L̄′φβL̄∗−1

φφ

(xij dij)′H̄ij

= − κ

N(N − 1)H̄ij

{
xijW

−1
N x′ij − xijW−1

N L̄′φβL̄−1
φφd

′
ij − dijL̄−1

φφ L̄∗φβW−1
N x′ij

+dijL̄−1
φφ L̄φβW−1

N L̄′φβL̄−1
φφd

′
ij + dijW

(φ)−1
N d′ij

}
H̄ij,

which simplifies to the expression shown in (13).
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Results for the two-way model. Though we have focused on the downward bias
of the sandwich estimator for the three-way gravity model, it is also known to be biased
for the standard two-way gravity model without pair fixed effects (Egger and Staub, 2015;
Jochmans, 2017; Pfaffermayr, 2019). As it turns out, the analytics for the two-way and
three-way models are very similar here, and we can easily adapt our results to the simpler
two-way setting. The main change we would need to make is to replace Hij everywhere
it appears with Λij, including in the definitions of x̃ij, WN , and W

(φ)
N . The rest of the

derivations then follow in the same manner as for the three-way model. The resulting
correction has been included in our ppml_fe_bias Stata package for users working with
two-way gravity models. A version of this correction has been studied alongside other
methods in a recent paper by Pfaffermayr (2021).

A.8 More Discussion of IPPs in FE-PPML Models

In this part of the Appendix, we wish to give a more expansive discussion of when IPPs
may arise in case of an FE-PPML estimator. We have already reviewed the two-way
and three-way gravity models in the main text; thus, here, we will focus first on the
classic “one-way” FE panel setting where no IPP occurs. Doing so will allow us to draw
a contrast with other, more complex models where IPPs could be a problem. As part
of this discussion, we give some examples of panel models where FE-PPML is actually
inconsistent, unlike the models covered in the main text.

The Classic (One-way) Setting

Consider a static panel data model with individuals i = 1, . . . , N , time periods t =
1, . . . , T , outcomes yit, and strictly exogenous regressors xit satisfying

E(yit|xit, αi) = λit := exp(x′itβ + αi). (54)

The FE-PPML estimator maximizes ∑i,t (yit log λit + λit) over β and α. The correspond-
ing FOC’s may be written as

N∑
i=1

T∑
t=1

xit
(
yit − λ̂it

)
= 0, ∀i :

T∑
t=1

(
yit − λ̂it

)
= 0, (55)
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where λ̂it := exp(x′itβ̂+ α̂i). Solving for α̂i and plugging the expression back into the FOC
for β̂ we find

N∑
i=1

T∑
t=1

xit

[
yit −

exp(x′itβ̂)∑T
τ=1 exp(x′iτ β̂)

T∑
τ=1

yiτ

]
= 0, (56)

which, as long as (54) holds, are valid (sample) moments to estimate β. Thus, under
standard regularity conditions, we have that

√
N(β̂ − β0)→d N (0, V ) as N →∞, where

V is the asymptotic variance. The FE-PPML estimator therefore does not suffer from an
IPP: even though α̂i is an inconsistent estimate of αi, the FE-PPML score for β has zero
mean when evaluated at the true parameter β0, and β̂ therefore converges in probability
to β0 without any asymptotic bias. This is a well known result that can also be obtained
in the Poisson-MLE case by conditioning on ∑t yit; see Cameron and Trivedi (2015). For
our purposes, it gives us a benchmark against which other, more complex models may be
compared.

Examples where FE-PPML is Inconsistent

In the above “classic” setting, every observation is affected by exactly one fixed effect. In
current applied work, it is common to specify models with what we will call “overlapping”
fixed effects, where each observation may be affected by more than one fixed effects. Some
standard examples include the gravity model from international trade (as is our focus
in the main text) as well as other settings where researchers may wish to control for
multiple sources of heterogeneity (e.g., firm and employee, teacher and student). Thus,
it is important to clarify that the presence of overlapping fixed effects can easily lead to
an IPP, even when the underlying estimator is Poisson or PPML. We give the following
simple example:

Example 1. Consider a model with three time periods T = 3 and two fixed effects αi and
γi for each individual:

t = 1 : E(yi1|xi1, αi, γi) = λi1 := exp(x′i1β + αi),

t = 2 : E(yi2|xi2, αi, γi) = λi2 := exp(x′i2β + αi + γi),

t = 3 : E(yi3|xi3, αi, γi) = λi3 := exp(x′i3β + γi).

The FE-PPML estimator maximizes ∑N
i=1

∑3
t=1 (yit log λit + λit) over β, α and γ. T = 3

is fixed as N →∞.
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Example 2. In addition to i = 1, . . . , N and t = 1, . . . , T we re-introduce another panel
dimension j = 1, . . . , J and consider

E(yijt|xijt, αit, γij) = λijt := exp(x′ijtβ + αit + γij),

where αit is now indexed by both i and t and our second fixed effect is similarly indexed
by i and j. The FE-PPML estimator in this case maximizes ∑i,j,t (yijt log λijt + λijt) over
β, α and γ. We consider N →∞ with both J and T fixed, e.g. J = T = 2.

In these examples, because the fixed effects are overlapping, we have that α̂ enters into
the FOC for γ̂, and vice versa. Therefore, when for a given value β̂ we want to solve the
FOC for α̂ and γ̂ we have to solve a system of equations, and the solutions become much
more complicated functions of the outcome variable than in the one-way model. While
having this type of co-dependence between the FOCs for the various fixed effects need not
necessarily lead to an IPP, as we discuss next, it does create one in models where more
than one fixed effect dimension grows at the same rate as the panel size, as is the case
with α and γ in both of these examples.

In gravity settings, by contrast, the crucial distinction is that the dimensions of each
fixed effect grow only with the square root of the sample size as the number of countries
increases. As mentioned in the text, this ensures that the IPPs associated with each fixed
effect “decouple” from one another, in the sense described by Fernández-Val and Weidner
(2016). However, in the inconsistency examples just given, the estimation noise in the
estimated α parameters will always depend on the estimation noise in the estimated
γ parameters, and vice versa, even as N → ∞. Thus, decoupling cannot occur. For
illustration, we have used the model from Example 1 as our example of inconsistency in
our earlier Figure 1. We have also performed simulations for the model in Example 2 and
found similar results.

A Suggested Heuristic for IPPs when the Estimator is FE-PPML

As has been made clear from our discussion and results, the usual generic bias heuristic
shown in our equation (6) from Fernández-Val and Weidner (2018) is generally not ap-
propriate for FE-PPML. Indeed, because FE-PPML can be asymptotically unbiased in
special cases, it may not be productive to try to boil down how their biases are likely to
behave to a single formula. Instead, we propose the following approach:
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1. If there are no fixed effect dimensions that grow proportionately with the sample,
we expect FE-PPML to be unbiased asymptotically.

2. Otherwise, the likely order of the bias can be derived as follows:

(a) Construct the equivalent multinomial model by profiling out the largest fixed
effect dimension.

(b) Infer what the order of the asymptotic bias would be for the equivalent multi-
nomial model by calculating p/n (i.e., as in (6)).

For example, in the three-way gravity model, the number of observations is on the
order of N2T and the number of parameters is on the order of N2 pair fixed effects plus
2NT exporter-time and importer-time fixed effects. However, after profiling out the pair
fixed effects, we only have the 2NT exporter-time and importer-time fixed effects. Thus,
we take p/n to be proportional to 1/N as N →∞, implying an asymptotic bias of order
1/N .

For further illustration, consider Examples 1 and 2 above. In these cases, even after
profiling out α, one still finds that p is proportional to n as n→∞, implying inconsistency.
As a contrast, consider the two-way gravity model. As we have just discussed, all of the
fixed effects grow only with the square root of n in that case, implying it is asymptotically
unbiased.

“Four-way” gravity models. As a more complicated example, consider the following
“four-way” gravity model:

yijlt = exp [αilt + αjlt + ηijl + ζijt + xijltβ]ωijlt. (57)

This type of model may be used for trade data that is observed separately for different
industries or commodities, which here are indexed by l = 1...L. αilt, αjlt, and ηijl re-
spectively are industry-level analogs of αit, αjt, and ηij from the three-way model. Thus,
they allow multilateral resistance effects and cross-sectional heterogeneity in trade costs
to vary by industry. The fourth fixed effect, ζijt, captures general changes in trade across
all industries for a given pair. xijlt is assumed to be an industry-specific policy variable
of interest (e.g., tariffs). We assume that the error term ωijlt exhibits correlation over
time within the same exporter-importer-industry triplet but is independent across trade
partners and across industries within the same exporter-importer pair.
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The four-way model does not conform to the framework from our main analysis, but
we can nonetheless use the above heuristic to infer the order of the bias and propose a
correction. After profiling out the order-N2L exporter-importer-industry fixed effects, the
model has on the order of 2NLT exporter-industry-time and importer-industry-time fixed
effects and N2T exporter-importer-time fixed effects. The number of observations is on
the order of N2LT . Following our discussion from Section 2.2, the bias is thus expected
to be of the form

1
N
b(α) + 1

N
b(γ) + 1

L
b(ζ). (58)

Where b(α), b(γ), and b(ζ) are unknown constants. Two observations stand out. First,
for consistency, we require both N and L to be large. For data sets where the number
of industries is relatively small, the 1/L bias term associated with the ζijt fixed effect is
likely to induce substantial bias. We will thus consider the implications for asymptotic
bias as N and L grow large at the same rate. Second, the order of the standard error as
N and L both→∞ while T is fixed is 1/(N

√
L). The ratio of the asymptotic bias to the

standard error as N and L both →∞ is expected to be of the form
√
Lb(α) +

√
Lb(γ) + N√

L
b(ζ)

c
,

where c > 0 is a positive constant. This ratio diverges to infinity as N,L→∞, implying
that the standard error shrinks to zero faster than the bias does. This is a more severe
form of the asymptotic bias problem than the one we found for the three-way model,
where the bias and standard error both decreased at the same rate asymptotically. It is
therefore advised that a jackknife correction should be used to reduce the bias. This can
be done by holding out industries to inflate the 1/L bias while simultaneuously holding
out countries to inflate the 1/N bias. For example, a jackknife sample with half the
number of countries and half the number of industries will have an asymptotic bias of
order 2/N + 2/L.

A closely related model that we can also discuss is the case when the fourth fixed
effect, ζijt, is not included in the model shown in (57). An example of when this might
be desirable is when the policy variable of interest does not vary across industries (e.g.,
a trade agreement dummy). In this case, one can infer from the formula in (58) that we
would expect an asymptotic bias of order 1/N , like what we found in the case of the three-
way model. Furthermore, if only the number of countries is allowed to become large, while
both L and T are held fixed, the standard error is also of order 1/N , and the behavior
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of the asymptotic bias is exactly like what we found for the three-way case. However,
interestingly, if both N and L →∞, we are back in the case where the bias-to-standard
error ratio heads to infinity. Thus, the severity of the problem will depend importantly
on the number of industries in both of these models.

Finally, note that if T is no longer fixed, so that N , L, and T all → ∞ jointly, we
expect the special properties of PPML to cause the IPP bias to become more benign.
We know from Fernández-Val and Weidner (2016)’s earlier results for the two-way model
and from our own results for the three-way model that the decoupling of the IPPs as all
dimensions of the panel become large at the same rate eliminates the asymptotic bias in
these settings. Future work can investigate to what extent this holds true for four-way
panel models.
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